cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A049439 Numbers k such that the number of odd divisors of k is an odd divisor of k.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 18, 32, 36, 64, 72, 128, 144, 225, 256, 288, 441, 450, 512, 576, 625, 882, 900, 1024, 1089, 1152, 1250, 1521, 1764, 1800, 2025, 2048, 2178, 2304, 2500, 2601, 3042, 3249, 3528, 3600, 4050, 4096, 4356, 4608, 4761, 5000, 5202, 5625, 6084
Offset: 1

Views

Author

Simon Colton (simonco(AT)cs.york.ac.uk)

Keywords

Comments

Invented by the HR concept formation program.
Sequence consists of all numbers of the form A000079(k)*A036896(m). - Matthew Vandermast, Nov 14 2010

Examples

			There are 3 odd divisors of 18, namely 1,3 and 9 and 3 itself is an odd divisor of 18.
		

Crossrefs

Contains A000079 and A036896.
Subsequence of A028982. Includes A120349, A120358, A120359, A120361, A181795. See also A181794.

Programs

  • Haskell
    a049439 n = a049439_list !! (n-1)
    a049439_list = filter (\x -> ((length $ oddDivs x) `elem` oddDivs x)) [1..]
       where oddDivs n = [d | d <- [1,3..n], mod n d == 0]
    -- Reinhard Zumkeller, Aug 17 2011
    
  • Mathematica
    ok[n_] := (d = Length @ Select[Divisors[n], OddQ] ;
      IntegerQ[n/d] && OddQ[d]); Select[Range[6100], ok]
    (* Jean-François Alcover, Apr 22 2011 *)
    odQ[n_]:=Module[{ods=Select[Divisors[n],OddQ]},MemberQ[ods,Length[ ods]]]; Select[Range[7000],odQ] (* Harvey P. Dale, Dec 18 2011 *)
    Select[Range[6000], OddQ[(d = DivisorSigma[0, #/2^IntegerExponent[#, 2]])] && Divisible[#, d] &] (* Amiram Eldar, Jun 12 2022 *)
  • PARI
    is(n)=my(d=numdiv(n>>valuation(n,2))); d%2 && n%d==0 \\ Charles R Greathouse IV, Feb 07 2017

Formula

a(n) = A000079(k)*A016754(m) for appropriate k, m. - Reinhard Zumkeller, Jun 05 2008

Extensions

Example corrected by Harvey P. Dale, Jul 14 2011

A057265 Even refactorable numbers (i.e., the number of divisors is itself a divisor and it is also even).

Original entry on oeis.org

2, 8, 12, 18, 24, 40, 56, 60, 72, 80, 84, 88, 96, 104, 108, 128, 132, 136, 152, 156, 180, 184, 204, 228, 232, 240, 248, 252, 276, 288, 296, 328, 344, 348, 360, 372, 376, 384, 396, 424, 444, 448, 450, 468, 472, 480, 488, 492
Offset: 1

Views

Author

Simon Colton (simonco(AT)cs.york.ac.uk), Aug 21 2000

Keywords

Comments

Invented by the HR mathematical theory formation program.

Examples

			18 is refactorable because tau(18) = 6 and 6 divides 18 and 18 is even.
		

References

  • S. Colton, Unpublished PhD Thesis, University of Edinburgh, 2000

Crossrefs

Programs

  • Magma
    [k:k in [2..500 by 2]| IsIntegral(k/d) and IsEven(d) where d is #Divisors(k)]; // Marius A. Burtea, Jan 13 2020
  • Mathematica
    rfnQ[n_]:=Module[{ds=DivisorSigma[0,n]},Divisible[n,ds] && EvenQ[ds]];Select[Range[2,500,2],rfnQ]  (* Harvey P. Dale, Mar 14 2011 *)

Extensions

Corrected (erroneous term 36 removed) by Harvey P. Dale, Mar 14 2011

A181795 Numbers k such that the number of odd divisors of k is an odd divisor of k, and the number of even divisors of k is an even divisor of k.

Original entry on oeis.org

4, 16, 36, 144, 256, 576, 900, 1764, 2304, 2500, 3600, 4356, 6084, 7056, 8100, 10000, 10404, 12996, 17424, 19044, 22500, 24336, 26244, 30276, 32400, 34596, 36864, 41616, 49284, 51984, 57600, 60516, 65536, 66564, 76176, 79524, 90000
Offset: 1

Views

Author

Matthew Vandermast, Nov 14 2010

Keywords

Comments

All members are even squares (A016742). Intersection of A049439 and A181794.
Includes all numbers of the form A001146(m)*A036896(n) for m>1.

Examples

			a(3)=36 has 3 odd divisors (1, 3, and 9) and 6 even divisors (2, 4, 6, 12, 18, and 36). 3 and 6 are odd and even respectively, and both are divisors of 36.
		

Crossrefs

Subsequence of A000290, A016742, A120351.
See also A033950,A181687. For refactorable members of this sequence, see A120349.

Programs

  • Mathematica
    ndQ[n_]:=Module[{d=Divisors[n],od,ev},od=Count[d,?OddQ];ev=Count[ d, ?EvenQ]; ev!=0&&OddQ[od]&&EvenQ[ev]&&Divisible[n,od]&&Divisible[ n, ev]]; Select[Range[100000],ndQ] (* Harvey P. Dale, Feb 24 2016 *)
  • PARI
    isok(n) = my(nod = numdiv(n>>valuation(n, 2)), noe = if (n%2, 0, numdiv(n/2))); (nod % 2) && nod && !(n % nod) && !(noe % 2) && noe && !(n % noe); \\ Michel Marcus, Jan 14 2014

Extensions

More terms from Nathaniel Johnston, Nov 17 2010

A036897 Square root of odd refactorable numbers.

Original entry on oeis.org

1, 3, 15, 21, 25, 33, 39, 45, 51, 57, 69, 75, 81, 87, 93, 111, 123, 129, 141, 159, 177, 183, 189, 201, 213, 219, 225, 237, 249, 267, 291, 303, 309, 315, 321, 327, 339, 343, 381, 393, 405, 411, 417, 447, 453, 471, 489, 495, 501, 519, 525, 537, 543, 567, 573
Offset: 1

Views

Author

Simon Colton (simonco(AT)cs.york.ac.uk)

Keywords

Comments

Odd refactorable numbers are always squares.

Examples

			15^2 is refactorable because 225 has 9 divisors and 9 divides 225.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 1000, 2], Divisible[#^2, DivisorSigma[0,#^2]] &] (* Amiram Eldar, Jul 02 2019 *)
  • PARI
    isrefac(n) = ! (n % numdiv(n));
    lista(nn) = {forstep (n = 1, nn, 2, if (isrefac(n), print1(sqrtint(n), ", ")););} \\ Michel Marcus, Aug 31 2013

Formula

a(n) = sqrt(A036896(n)). - Amiram Eldar, Jul 02 2019

A208251 Number of refactorable numbers less than or equal to n.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 12 2013

Keywords

Comments

A number is refactorable if it is divisible by the number of its divisors.

Examples

			a(1) = 1 since 1 is the first refactorable number, a(2) = 2 since there are two refactorable numbers less than or equal to 2, a(3) through a(7) = 2 since the next refactorable number is 8.
		

Crossrefs

Programs

  • Maple
    with(numtheory) a:=n->sum((1 + floor(i/tau(i)) - ceil(i/tau(i))), i=1..n);
  • Mathematica
    Accumulate[Table[If[Divisible[n, DivisorSigma[0, n]], 1, 0], {n, 1,100}]] (* Amiram Eldar, Oct 11 2023 *)
  • PARI
    a(n) = sum(i=1, n, q = i/numdiv(i); 1+ floor(q) - ceil(q)); \\ Michel Marcus, Sep 10 2018

Formula

a(n) = Sum_{i=1..n} 1 + floor(i/d(i)) - ceiling(i/d(i)), where d(n) is the number of divisors of n.

A281294 Refactorable numbers k such that 2*k + 1 is also a refactorable number.

Original entry on oeis.org

3280, 6160, 8320, 51520, 99904, 174640, 386320, 541840, 883120, 1690960, 2062480, 2365312, 2688880, 2959744, 3077680, 3152560, 3274240, 5375920, 6885760, 8925312, 10030720, 11219584, 11912080, 12058960, 14370160, 15854080, 18966640, 21839440, 22038160, 24787840, 26725360
Offset: 1

Views

Author

Altug Alkan, Jan 19 2017

Keywords

Comments

If k is in this sequence, then 2*k + 1 must be a square. So this sequence is a subsequence of A046092.

Examples

			3280 is a term because 3280 = 2^4 * 5 * 41 is divisible by d(3280) = 2^2 * 5 and 2 * 3280 + 1 = 3^8 is divisible by d(3^8) = 9.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[2 n (n + 1), {n, 10^4}], Times @@ Boole@ Thread[Divisible[#, DivisorSigma[0, #]] &@ {#, 2 # + 1}] > 0 &] (* Michael De Vlieger, Jan 19 2017 *)
  • PARI
    isA033950(n) = n % numdiv(n)== 0;
    is(n) = isA033950(n) && isA033950(2*n+1);

A342969 Numbers m such that both m^2-1 and m^2 are refactorable numbers (A033950).

Original entry on oeis.org

3, 39, 225, 249, 321, 447, 471, 519, 681, 831, 921, 993, 1119, 1191, 1473, 1641, 1671, 1857, 1929, 1983, 2361, 2391, 2463, 2625, 2631, 2913, 3321, 3369, 3561, 3591, 3777, 3807, 3831, 3903, 4119, 4281, 4287, 4359, 4545, 4569, 4791, 5001, 5025, 5079, 5241, 5481
Offset: 1

Views

Author

Jianing Song, Apr 01 2021

Keywords

Comments

Numbers m such that m^2-1 is divisible by d(m^2-1) and m^2 is divisible by d(m^2), d = A000005.
Zelinsky (2002, Theorem 59, p. 15) proved that if k > 1, k and k+1 are both refactorable numbers, then k is even. Such k must be of the form m^2-1 for some odd m.
The smallest term not divisible by 3 is a(66) = 9025.
For the first terms we have d(a(n)^2-1) > d(a(n)^2). But this is not always the case. The smallest counterexample is a(30) = 3591, where d(3591^2-1) = 40 and d(3591^2) = 63. The terms m such that d(m^2-1) < d(m^2) are listed in A342970. [Note that d(m^2-1) = d(m^2) is impossible since d(m^2-1) is even and d(m^2) is odd. - Jianing Song, Nov 21 2021]

Examples

			39 is a term since 39^2-1 = 1520 is divisible by d(1520) = 20 and 39^2 = 1521 is divisible by d(1521) = 9.
		

Crossrefs

Programs

  • Mathematica
    refQ[n_] := Divisible[n, DivisorSigma[0, n]]; Select[Range[6000], And @@ refQ /@ (#^2 - {1, 0}) &] (* Amiram Eldar, Feb 03 2025 *)
  • PARI
    isrefac(n) = ! (n % numdiv(n));
    isA342969(n) = (n>1) && isrefac(n^2-1) && isrefac(n^2)

Formula

A036898(2*n+1) = A114617(n+1) = a(n)^2 - 1; A036898(2*n+2) = A114617(n+1) + 1 = a(n)^2.

A120319 RF(3): refactorable numbers with smallest prime factor 3.

Original entry on oeis.org

9, 225, 441, 1089, 1521, 2025, 2601, 3249, 4761, 5625, 6561, 7569, 8649, 12321, 15129, 16641, 19881, 25281, 31329, 33489, 35721, 40401, 45369, 47961, 50625, 56169, 62001, 71289, 84681, 91809, 95481, 99225, 103041, 106929, 114921, 145161, 154449, 164025, 168921
Offset: 1

Views

Author

Walter Kehowski, Jun 20 2006

Keywords

Comments

Numbers that are odd squares, 3 is their smallest prime factor, and are refactorable.
See A033950 for references. For any prime p, p^(p-1) is the smallest element of RF(p), the refactorable numbers whose smallest prime factor is p. Thus 3^(3-1)=9 is the first element. Other elements would also be 3^2*17^2 or 3^16*17^2.

Crossrefs

Intersection of A016945 and A033950.
Subsequence of A016946.

Programs

  • Maple
    with(numtheory); RF3:=[]: p:=3: for w to 1 do for j from 1 to 12^3 do k:=2*j+1; if k mod p = 0 then n:=k^2; t:=tau(n); if (n mod t = 0) then RF3:=[op(RF3),n]; print(ifactor(n)); fi fi; od od;
  • PARI
    lista(kmax) = forstep(k = 3, kmax, 6, if(!(k^2 % numdiv(k^2)), print1(k^2, ", "))); \\ Amiram Eldar, Aug 01 2024

Extensions

a(37)-a(39) from Amiram Eldar, Aug 01 2024

A120320 RF(5): refactorable numbers with smallest prime factor 5.

Original entry on oeis.org

625, 1500625, 9150625, 17850625, 37515625, 52200625, 73530625, 81450625, 174900625, 442050625, 577200625, 1171350625, 1766100625, 1838265625, 2136750625, 3049800625, 4931550625, 7573350625, 8653650625, 12594450625, 15882300625, 17748900625, 21970650625, 24343800625
Offset: 1

Views

Author

Walter Kehowski, Jun 20 2006

Keywords

Comments

Numbers that are odd squares, 5 is their smallest prime factor, and are refactorable.
See A033950 for references. For any prime p, p^(p-1) is the smallest element of RF(p), the refactorable numbers whose smallest prime factor is p. Thus 5^(5-1) = 625 is the first element. Other elements would also be 5^4*17^4 or 5^16*17^4.
All the terms are of the form 5^2 * A084967(k)^2 = 5^4 * A007310(k)^2. - Amiram Eldar, Aug 01 2024

Crossrefs

Intersection of A033950 and A084967.

Programs

  • Maple
    with(numtheory); RF5:=[]: p:=5: for w to 1 do for j from 1 to 12^5 do k:=2*j+1; if k mod 3 <> 0 and k mod p = 0 then n:=k^2; t:=tau(n); if (n mod t = 0) then RF5:=[op(RF5),n]; print(ifactor(n)); fi fi; od od;
  • PARI
    lista(kmax) = {my(m); for(k = 1, kmax, m = 25*(k\2*6-(-1)^k)^2; if(!(m % numdiv(m)), print1(m, ", ")));} \\ Amiram Eldar, Aug 01 2024

Extensions

a(37)-a(40) from Amiram Eldar, Aug 01 2024

A120321 RF(7): refactorable numbers with 7 as smallest prime factor.

Original entry on oeis.org

117649, 208422380089, 567869252041, 2839760855281, 5534900853769, 17416274304961, 69980368892329, 104413920565969, 301855146292441, 558845013849409, 743702041351801, 1268163904241521, 2607614922465721
Offset: 1

Views

Author

Walter Kehowski, Jun 21 2006

Keywords

Comments

Numbers that are odd squares, 7 is their smallest prime factor, and are refactorable.
See A033950 for references. For any prime p, p^(p-1) is the smallest element of RF(p), the refactorable numbers whose smallest prime factor is p. Thus 7^(7-1)=117649 is the first element. Other elements would also be 7^6*17^6 or 7^16*17^6. Here are the prime factorizations for the first 49 elements of RF7: (7^6), (7^6)*(11^6), (7^6)*(13^6), (7^6)*(17^6), (7^6)*(19^6), (7^6)*(23^6), (7^6)*(29^6), (7^6)*(31^6), (7^6)*(37^6), (7^6)*(41^6), (7^6)*(43^6), (7^6)*(47^6), (7^6)*(53^6), (7^6)*(59^6), (7^6)*(61^6), (7^6)*(67^6), (7^6)*(71^6), (7^6)*(73^6), (7^6)*(79^6), (7^6)*(83^6), (7^6)*(89^6), (7^12)*(13^6), (7^6)*(97^6), (7^6)*(101^6), (7^6)*(103^6), (7^6)*(107^6), (7^6)*(109^6), (7^6)*(113^6), (7^6)*(127^6), (7^6)*(131^6), (7^6)*(137^6), (7^6)*(139^6), (7^6)*(11^6)*(13^6), (7^6)*(149^6), (7^6)*(151^6), (7^6)*(157^6), (7^6)*(163^6), (7^6)*(167^6), (7^6)*(13^12), (7^6)*(173^6), (7^6)*(179^6), (7^6)*(181^6), (7^6)*(11^6)*(17^6), (7^6)*(191^6), (7^6)*(193^6), (7^6)*(197^6), (7^6)*(199^6), (7^6)*(11^6)*(19^6), (7^6)*(211^6).

Examples

			a(1) = 7^(7-1) = 117649.
		

Crossrefs

Intersection of A033950 and A084968.

Programs

  • Maple
    with(numtheory); p:=7: RF7:=[p^(p-1)]: P:=[seq(ithprime(i),i=2..pi(p)-1)]; for w to 1 do for j from 1 to 12^3 do k:=2*j+1; if andmap(z -> k mod z <> 0, P) then for s from 2 to p-1 by 2 do #accelerate creation n:=7^6*k^s; t:=tau(n); if not n in RF7 and (n mod t = 0) then RF7:=[op(RF7),n]; print(ifactor(n)); fi; od; fi; od od; RF7:=sort(RF7);
Showing 1-10 of 13 results. Next