A037045 5-white numbers: partition digits of n^5 into blocks of 5 starting at right; sum of these 5-digit numbers equals n.
0, 1, 27100, 73440, 95120, 104336, 139564, 143901, 144442, 148780, 155555, 165311, 172898, 182655, 195119, 204876, 204877, 212463, 216530, 217341, 227098, 233873, 234685, 238752, 239021, 239563, 244441, 248779, 251216, 255554, 260432
Offset: 1
Examples
27100 is a 5-white number since 27100^5=14616603103510000000000 and 146+16603+10351+00000+00000=27100.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..53
Programs
-
Mathematica
w5Q[n_]:=Module[{idn5=IntegerDigits[n^5],len},len=Length[idn5];Total[ FromDigits/@Partition[PadLeft[idn5,len+5-Mod[len,5]],5]]==n]; Select[ Range[0,300000],w5Q] (* Harvey P. Dale, Jul 27 2011 *) Select[Range[0, 10^6], # == Plus@@ IntegerDigits[#^5, 10^5] &] (* Giovanni Resta, Jul 12 2016 *) Select[Range[0,261000],Total[FromDigits/@(Reverse/@Partition[ Reverse[ IntegerDigits[ #^5]],UpTo[5]])]==#&] (* Harvey P. Dale, Aug 22 2021 *)
Extensions
Offset set to 1 by Paolo P. Lava, Jul 12 2016