cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037144 Numbers with at most 3 prime factors (counted with multiplicity).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 85, 86
Offset: 1

Views

Author

Keywords

Comments

Complement of A033987: A001222(a(n))<=3; A117358(a(n))=1. - Reinhard Zumkeller, Mar 10 2006
Also numbers such that exist permutations of all proper divisors only with coprime adjacent elements: A178254(a(n))>0. - Reinhard Zumkeller, May 24 2010

Crossrefs

A037143 is a subsequence.

Programs

  • Magma
    [ n: n in [1..86] | n eq 1 or &+[ t[2]: t in Factorization(n) ] le 3 ]; /* Klaus Brockhaus, Mar 20 2007 */
    
  • Mathematica
    Select[Range[100],PrimeOmega[#]<4&] (* Harvey P. Dale, Oct 15 2015 *)
  • PARI
    is(n)=bigomega(n)<4 \\ Charles R Greathouse IV, Sep 14 2015
    
  • Python
    from math import prod, isqrt
    from sympy import primerange, integer_nthroot, primepi
    def A037144(n):
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n+x-2-primepi(x)-sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,i)) for i in range(2,4)))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 23 2024

Formula

a(n) ~ 2n log n/(log log n)^2. - Charles R Greathouse IV, Sep 14 2015

Extensions

More terms from Reinhard Zumkeller, Mar 10 2006
More terms from Klaus Brockhaus, Mar 20 2007