cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037237 Expansion of (3 + x^2) / (1 - x)^4.

Original entry on oeis.org

3, 12, 31, 64, 115, 188, 287, 416, 579, 780, 1023, 1312, 1651, 2044, 2495, 3008, 3587, 4236, 4959, 5760, 6643, 7612, 8671, 9824, 11075, 12428, 13887, 15456, 17139, 18940, 20863, 22912, 25091, 27404
Offset: 0

Views

Author

Keywords

Comments

This sequence is the partial sums of A058331. - J. M. Bergot, May 31 2012

Programs

  • Magma
    I:=[3, 12, 31, 64]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)- Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 21 2012
    
  • Mathematica
    CoefficientList[Series[(3+x^2)/(1-x)^4,{x,0,50}],x]  (* Harvey P. Dale, Mar 06 2011 *)
    LinearRecurrence[{4,-6,4,-1},{3,12,31,64},40] (* Vincenzo Librandi Jun 21 2012 *)
  • PARI
    x='x+O('x^50); Vec((3+x^2)/(1-x)^4) \\ G. C. Greubel, Jul 22 2017

Formula

a(n) = Sum_{k=0..n} (2*(k+1)^2 + 1). - Mike Warburton, Jul 07 2007, Sep 07 2007
a(n) = (n+1)*(2*n^2 + 7*n + 9)/3. - R. J. Mathar, Mar 29 2010
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 21 2012
E.g.f.: (1/3)*(9 + 27*x + 15*x^2 + 2*x^3)*exp(x). - G. C. Greubel, Jul 22 2017