cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A016062 Write down decimal expansion of Pi; divide up into chunks of minimal length so that chunks are increasing numbers and do not begin with 0.

Original entry on oeis.org

3, 14, 15, 92, 653, 5897, 9323, 84626, 433832, 795028, 841971, 6939937, 51058209, 74944592, 307816406, 2862089986, 28034825342, 1170679821480, 8651328230664, 70938446095505, 82231725359408, 128481117450284, 1027019385211055, 59644622948954930, 381964428810975665, 933446128475648233
Offset: 1

Views

Author

Keywords

Comments

"Slices of pi" sequence. - Michael Joseph Halm, Aug 02 2002

Examples

			Pi = 3.14159265358979323846264338327950288419716939937510582...
		

Crossrefs

Programs

  • PARI
    default(realprecision,1000);P=Pi;until(P-=L=P\1,print1(L",");while((L>P*=10)||frac(P)<.1,)) \\ Note: The last line of printed values may not be accurate, double-check with higher precision. - M. F. Hasler, May 11 2015

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Oct 04 2001
Some more terms from M. F. Hasler, May 11 2015
Offset changed to 1 by Sean A. Irvine, Jan 02 2019

A050819 Increasing odd numbers seen in decimal expansion of Pi (disregarding the decimal period) contiguous, smallest and distinct.

Original entry on oeis.org

3, 141, 59265, 358979, 3238462643, 3832795028841, 97169399375105, 820974944592307, 81640628620899862803, 48253421170679821480865, 132823066470938446095505, 82231725359408128481117450284102701, 9385211055596446229489549303819644288109
Offset: 1

Views

Author

Patrick De Geest, Oct 15 1999

Keywords

Comments

Leading zero not allowed thus forcing continuation of previous term.

Crossrefs

Extensions

a(12) corrected and a(13) from Sean A. Irvine, Aug 19 2021

A035331 Base-1000 expansion of Pi.

Original entry on oeis.org

3, 141, 592, 653, 589, 793, 238, 462, 643, 383, 279, 502, 884, 197, 169, 399, 375, 105, 820, 974, 944, 592, 307, 816, 406, 286, 208, 998, 628, 34, 825, 342, 117, 67, 982, 148, 86, 513, 282, 306, 647, 93, 844, 609, 550, 582, 231, 725, 359, 408, 128, 481, 117, 450
Offset: 0

Views

Author

Keywords

Comments

Start with a(0)=3; other terms are formed from triples of successive digits in the decimal expansion of Pi.
This sequence can be considered as a (pseudo)random generator with range 0..999. Its scatterplot graph is very similar to that of other random generators, e.g., A096558. - M. F. Hasler, May 14 2015

Examples

			Pi = 3.141 592 653 589 793 238 462 643 383 279 502 884 197 169 399 375 105 ...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi,1000,60][[1]] (* Harvey P. Dale, Nov 22 2015 *)
  • PARI
    default(realprecision,3*N=100);vector(N,i,Pi\1000^(1-i)%1000) \\ or: {P=Pi;vector(N,i,P\1+0*P=frac(P)*1000)} or {P=Pi/1000;vector(N,i,floor(P=frac(P)*1000))}. \\ M. F. Hasler, May 11 2015

Formula

a(n) = floor(Pi*10^(3n)) mod 1000. - M. F. Hasler, May 14 2015

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Oct 04 2001
Better definition from Franklin T. Adams-Watters, Apr 10 2006

A098711 Write down decimal expansion of Pi; starting with 31, divide up into chunks of minimal length so that chunks are increasing numbers and do not begin with 0.

Original entry on oeis.org

31, 41, 59, 265, 358, 979, 3238, 4626, 43383, 279502, 884197, 1693993, 75105820, 97494459, 230781640, 628620899, 862803482, 5342117067, 9821480865, 132823066470, 938446095505, 8223172535940, 81284811174502, 84102701938521
Offset: 1

Views

Author

Alexandre Wajnberg, Sep 28 2004

Keywords

Comments

Seems to grow slower than A016062 (another sequence built on the same principle, which begins with 3, 14, 15, 92, 653...).

Examples

			a(4) = 265, the three digits of Pi following a(3) = 59, because neither 2 nor 26 is > 59. a(13) = 75105820 even though 7510582 > a(12), because a(14) may not begin with a 0.
		

Crossrefs

Extensions

Edited and extended by David Wasserman, Feb 26 2008
Showing 1-4 of 4 results.