cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A027623 a(0) = 1; for n > 0, a(n) = number of rings with n elements.

Original entry on oeis.org

1, 1, 2, 2, 11, 2, 4, 2, 52, 11, 4, 2, 22, 2, 4, 4, 390, 2, 22, 2, 22, 4, 4, 2, 104, 11, 4, 59, 22, 2, 8, 2
Offset: 0

Views

Author

Keywords

Comments

Here a ring means (R,+,*): (R,+) is an abelian group, * is associative, a*(b+c) = a*b + a*c, (a+b)*c = a*c + b*c. Need not contain "1", * need not be commutative.
The sequence continues a(32) = ? (>18590), a(33) = 4, 4, 4, 121, 2, 4, 4, 104, 2, 8, 2, 22, 22, 4, 2, 780, 11, 22, 4, 22, 2, 118, 4, 104, 4, 4, 2, 44, 2, 4, 22 = a(63), a(64) = ? (> 829826). - Christof Noebauer (christof.noebauer(AT)algebra.uni-linz.ac.at), Sep 29 2000
The paper by Antipkin/Elizarov also gives the number a(p^3) of rings of order p^3. - Hans H. Storrer (storrer(AT)math.unizh.ch), Sep 16 2003
If n is a squared prime, there are 11 mutually nonisomorphic rings of order n [see Raghavendran, p. 228]. - R. J. Mathar, Apr 20 2008

Examples

			The 11 rings of order 4 (from _Christian G. Bower_):
  over C4: 1*1 = 0, 1 or 2;
  over C2 X C2 = <1> X <2>: (1*1,1*2,2*1,2*2) = 0000, 0001, 0002, 0012, 0102, 0112, 1002 or 1223.
		

Crossrefs

From Bernard Schott, Mar 28 2021: (Start)
--------------------------------------------------------------------
| Rings with | with 1 | without 1 | with 1 or |
| n elements | | | without 1 |
--------------------------------------------------------------------
| Commutative | A127707 | A342375 | A037289 |
--------------------------------------------------------------------
| Noncommutative | A127708 | A342376 | A209401 |
--------------------------------------------------------------------
| Commutative or | A037291 | A342377 | this sequence: a(0) = 1 |
| noncommutative | | | A037234 with a(0) = 0 |
--------------------------------------------------------------------
(End)

Programs

  • PARI
    apply( A027623(n, e=0)=if( !e, vecprod([call(self(), f) | f <- factor(n)~]), e<3, [2^(n>0), 11][e], e==3, if(n>2, 3*sqrtnint(n, 3), 2)+50, n>2 || e>4, /*error*/("not yet implemented"), 390), [0..63]) \\ M. F. Hasler, Jan 05 2021

Extensions

More terms from Christian G. Bower, Jun 15 1998
a(16) from Christof Noebauer (christof.noebauer(AT)algebra.uni-linz.ac.at), Sep 29 2000

A127707 Number of commutative rings with 1 containing n elements.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 10, 4, 1, 1, 4, 1, 1, 1, 37, 1, 4, 1, 4, 1, 1, 1, 10, 4, 1, 11, 4, 1, 1, 1, 109, 1, 1, 1, 16, 1, 1, 1, 10, 1, 1, 1, 4, 4, 1, 1, 37, 4, 4, 1, 4, 1, 11, 1, 10, 1, 1, 1, 4, 1, 1, 4
Offset: 1

Views

Author

Hugues Randriam (randriam(AT)enst.fr), Jan 24 2007

Keywords

Comments

Is this a multiplicative function?
Answer: yes! See the Eric M. Rains link for a proof for the result for all unital rings; restricting to commutative rings does not affect the essence of the proof. - Jianing Song, Feb 02 2020

Crossrefs

Formula

a(n) = A037291(n) - A127708(n). - Bernard Schott, Apr 19 2022

Extensions

Keyword 'mult' added by Jianing Song, Feb 02 2020
a(32)-a(63) using Nöbauer's data added by Andrey Zabolotskiy, Apr 18 2022
a(32) = 109 corrected by Bernard Schott, Apr 19 2022

A037290 Number of self-converse rings (isomorphic to inverse) with n elements.

Original entry on oeis.org

1, 2, 2, 9, 2, 4, 2, 40, 9, 4, 2, 18, 2, 4, 4, 242, 2, 18, 2, 18, 4, 4, 2, 80, 9, 4, 47, 18, 2, 8, 2
Offset: 1

Views

Author

Christian G. Bower, Jun 15 1998

Keywords

Crossrefs

Extensions

a(16) and a(27) from Christof Noebauer (christof.noebauer(AT)algebra.uni-linz.ac.at), Oct 17 2000

A339948 Number of non-isomorphic generalized quaternion rings over Z/nZ.

Original entry on oeis.org

1, 1, 4, 7, 4, 16, 4, 16, 10, 16, 4, 40, 4, 16, 16, 36, 4, 40, 4, 40, 16, 16, 4, 80, 10, 16, 20, 40, 4, 64, 4, 52, 16, 16, 16
Offset: 1

Views

Author

Keywords

Comments

Generalized quaternion rings over Z/nZ are of the form Z_n/(x^2-a, y^2-b, xy+yx).

Examples

			For n=2 all such rings are isomorphic to Z_n<x,y>/(x^2, y^2, xy+yx), so a(2)=1.
For n=4:
  Z_n<x,y>/(x^2,   y^2,   xy+yx),
  Z_n<x,y>/(x^2,   y^2-1, xy+yx),
  Z_n<x,y>/(x^2,   y^2-2, xy+yx),
  Z_n<x,y>/(x^2,   y^2-3, xy+yx),
  Z_n<x,y>/(x^2-1, y^2-1, xy+yx),
  Z_n<x,y>/(x^2-1, y^2-2, xy+yx),
  Z_n<x,y>/(x^2-3, y^2-3, xy+yx),
so a(4)=7.
		

Crossrefs

Programs

  • Mathematica
    Clear[phi]; phi[1] = phi[2] = 1; phi[4] = 7; phi[8] = 16;
    phi[16] = 36; phi[p_, s_] := 2 s^2 + 2;
    phi[n_] :=  Module[{aux = FactorInteger[n]},Product[phi[aux[[i, 1]], aux[[i, 2]]], {i, Length[aux]}]];
    Table[phi[i], {i,1, 35}]

Formula

If n is odd then a(n) = A286779(n).

A341201 Number of unitary rings with additive group (Z/nZ)^3.

Original entry on oeis.org

1, 7, 7, 27, 7, 49, 7
Offset: 1

Views

Author

Keywords

Crossrefs

A341202 Number of unitary commutative rings with additive group (Z/nZ)^3.

Original entry on oeis.org

1, 6, 6, 16, 6, 36, 6
Offset: 1

Views

Author

Keywords

Crossrefs

A209401 Number of noncommutative rings with n elements.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 18, 2, 0, 0, 4, 0, 0, 0, 228, 0, 4, 0, 4, 0, 0, 0, 36, 2, 0, 23, 4, 0, 0, 0
Offset: 1

Views

Author

Ben Branman, Mar 26 2012

Keywords

Comments

a(n)=0 if and only if n is squarefree.

Examples

			For n=8, there are 52 rings of order 8, 18 of which are noncommutative, so a(8)=18.
		

Crossrefs

Formula

a(n) = A027623(n) - A037289(n).

A342376 Number of non-commutative rings without 1 containing n elements.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 17, 2, 0, 0, 4, 0, 0, 0, 215, 0, 4, 0, 4, 0, 0, 0, 35, 2, 0, 23, 4, 0, 0, 0
Offset: 1

Views

Author

Bernard Schott, Mar 10 2021

Keywords

Comments

A ring without 1 is still a ring, although sometimes called a rng, or a non-unital ring, or a pseudo-ring (see Wikipedia links).
These are rings in which multiplication has no unit, and where there is at least one pair of non-commuting elements.
a(n)=0 if and only if n is squarefree.

Examples

			For n=4, there are 11 rings of order 4, 2 of which are without 1 and non-commutative, so a(4)= 2. Note that for these 2 rings, the abelian group under addition is the commutative Klein group Z/2Z + Z/2Z. These two rings are the last two rings described in the link _Greg Dresden_ in reference: Ring 22.NC.1 and Ring 22.NC.2.
		

Crossrefs

Number of non-commutative rings: A127708 (with 1 containing n elements), this sequence (without 1 containing n elements), A209401 (with n elements).

Formula

a(n) = A209401(n) - A127708(n) = A342377(n) - A342375(n).
a(A005117(n)) = 0; a(A013929(n)) > 0.

Extensions

a(28) corrected by Des MacHale, Mar 20 2021

A070932 Possible number of units in a finite (commutative or non-commutative) ring.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 36, 40, 42, 44, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 63, 64, 66, 70, 72, 78, 80, 81, 82, 84, 88, 90, 92, 93, 96, 98, 100
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 24 2002

Keywords

Comments

This is a list of the numbers of units in R where R ranges over all finite commutative or non-commutative rings.
By considering the ring Z_n and the finite fields GF(q) this sequence contains the values of the Euler function phi(n) (A000010) and prime powers - 1 (A181062). By taking direct product of rings, if n and m belong to the sequence then so does m*n.
Eric M. Rains has shown that these rules generate all terms of this sequence. More precisely, he shows this sequence (with 0 removed) is the multiplicative monoid generated by all numbers of the form q^n-q^{n-1} for n >= 1 and q a prime power (see Rains link).
Since the number of units of F_q[X]/(X^n) is q^n - q^(n-1), restricting to finite commutative rings gives the same sequence. A296241, which is a proper supersequence, allows the ring R to be infinite. - Jianing Song, Dec 24 2021

Crossrefs

A000252 is a subsequence.
A282572 is the subsequence of odd terms.
Proper subsequence of A296241.
The main entries concerned with the enumeration of rings are A027623, A037234, A037291, A037289, A038538, A186116.

Programs

  • Mathematica
    max = 100; A000010 = EulerPhi[ Range[2*max]] // Union // Select[#, # <= max &] &; A181062 = Select[ Range[max], Length[ FactorInteger[#]] == 1 &] - 1; FixedPoint[ Select[ Outer[ Times, #, # ] // Flatten // Union, # <= max &] &, Union[A000010, A181062] ] (* Jean-François Alcover, Sep 10 2013 *)
  • PARI
    list(lim)=my(P=1, q, v, u=List()); forprime(p=2, default(primelimit), if(eulerphi(P*=p)>=lim, q=p; break)); v=vecsort(vector(P/q*lim\eulerphi(P/q), k, eulerphi(k)), , 8); v=select(n->n<=lim, v); forprime(p=2, sqrtint(lim\1+1), P=p; while((P*=p) <= lim+1, listput(u, P-1))); v=vecsort(concat(v, Vec(u)), , 8); u=List([0]); while(#u, v=vecsort(concat(v, Vec(u)),,8); u=List(); for(i=3,#v, for(j=i,#v,P=v[i]*v[j]; if(P>lim,break); if(!vecsearch(v, P), listput(u, P))))); v \\ Charles R Greathouse IV, Jan 08 2013

Extensions

Entry revised by N. J. A. Sloane, Jan 06 2013, Jan 08 2013
Definition clarified by Jianing Song, Dec 24 2021

A341547 Number of rings with additive group (Z/nZ)^2.

Original entry on oeis.org

1, 8, 8, 66, 8, 64, 8, 301, 175, 64, 8, 528, 8, 64, 64
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Clear[phi]; phi[1] = 1; phi[p_,1] := 8; phi[2,2] = 66;
    phi[2,3] = 301; phi[3,2] = 175; phi[n_]:= Module[{aux = FactorInteger[n]}, Product[phi[aux[[i, 1]], aux[[i, 2]]], {i, Length[aux]}]];
Showing 1-10 of 15 results. Next