cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037306 Triangle T(n,k) read by rows: the number of compositions of n into k parts, modulo cyclic shifts.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 4, 3, 1, 1, 1, 3, 5, 5, 3, 1, 1, 1, 4, 7, 10, 7, 4, 1, 1, 1, 4, 10, 14, 14, 10, 4, 1, 1, 1, 5, 12, 22, 26, 22, 12, 5, 1, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 1, 6, 19, 43, 66, 80, 66, 43, 19, 6, 1, 1, 1, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 1
Offset: 1

Views

Author

Jens Voß, Jun 30 2001

Keywords

Comments

Triangle obtained from A047996 by dropping the first column (k=0), and row (n=0).
T(n, k) = number of different ways the number n can be expressed as ordered sums of k positive integers, counting only once those ordered sums that can be transformed into each other by a cyclic permutation.
These might be described as cyclic compositions, or more loosely as cyclic partitions. - N. J. A. Sloane, Sep 05 2012

Examples

			Triangle begins
  1;
  1,  1;
  1,  1,  1;
  1,  2,  1,  1;
  1,  2,  2,  1,  1;
  1,  3,  4,  3,  1,  1;
  1,  3,  5,  5,  3,  1,  1;
  1,  4,  7, 10,  7,  4,  1,  1;
  1,  4, 10, 14, 14, 10,  4,  1,  1;
  1,  5, 12, 22, 26, 22, 12,  5,  1,  1;
  1,  5, 15, 30, 42, 42, 30, 15,  5,  1,  1;
T(6,3) = 4, since there are 4 essentially different ways 1+1+4, 1+2+3, 1+3+2 and 2+2+2 of expressing 6 as a sum of 3 summands (all others can be obtained by cyclically permuting the summands in one of the above sums).
		

References

  • N. Zagaglia Salvi, Ordered partitions and colourings of cycles and necklaces, Bull. Inst. Combin. Appl., 27 (1999), 37-40.

Crossrefs

A047996 and A241926 are essentially identical to this entry.
Cf. A008965 (row sums), A000010, A007318, A027750, A215251, A004526 (column 2), A007997 (column 3), A008610 (column 4), A008646 (column 5), A032191 (column 6).
See A245558, A245559 for a closely related array.
See A052307 for compositions modulo cyclic shifts and reversal.

Programs

  • Haskell
    a037306 n k = div (sum $ map f $ a027750_row $ gcd n k) n where
       f d = a000010 d * a007318' (div n d) (div k d)
    a037306_row n = map (a037306 n) [1..n]
    a037306_tabl = map a037306_row [1..]
    -- Reinhard Zumkeller, Feb 06 2014
    
  • Maple
    A037306 := proc(n,k) local a,d; a := 0; for d in numtheory[divisors]( igcd(n,k)) do a := a+numtheory[phi](d)*binomial(n/d,k/d); end do: a/n; end proc:
    seq(seq(A037306(n,k), k=1..n), n=1..20); # R. J. Mathar, Jun 11 2011
  • Mathematica
    t[n_, k_] := Total[EulerPhi[#]*Binomial[n/#, k/#] & /@ Divisors[GCD[n, k]]]/n; Flatten[Table[t[n, k], {n, 13}, {k, n}]] (* Jean-François Alcover, Sep 08 2011, after formula *)
    nn=15;f[list_]:=Select[list,#>0&];Map[f,Transpose[Table[Drop[CoefficientList[Series[CycleIndex[CyclicGroup[n],s]/.Table[s[i]->x^i/(1-x^i),{i,1,n}],{x,0,nn}],x],1],{n,1,nn}]]]//Grid  (* Geoffrey Critzer, Oct 30 2012 *)
  • PARI
    T(n, k) = sumdiv(gcd(n,k), d, eulerphi(d)*binomial(n/d, k/d))/n; \\ Michel Marcus, Feb 10 2016

Formula

T(n,k) = (Sum_{d|gcd(n,k)} phi(d)*binomial(n/d,k/d))/n, where phi = A000010 = Euler's totient function. Also T(n,k) = A047996(n,k). - Paul Weisenhorn, Apr 06 2011

Extensions

More terms from David Wasserman, Mar 11 2002
Comments, reference, example from Paul Weisenhorn, Dec 18 2010