A037306 Triangle T(n,k) read by rows: the number of compositions of n into k parts, modulo cyclic shifts.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 4, 3, 1, 1, 1, 3, 5, 5, 3, 1, 1, 1, 4, 7, 10, 7, 4, 1, 1, 1, 4, 10, 14, 14, 10, 4, 1, 1, 1, 5, 12, 22, 26, 22, 12, 5, 1, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 1, 6, 19, 43, 66, 80, 66, 43, 19, 6, 1, 1, 1, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 1
Offset: 1
Examples
Triangle begins 1; 1, 1; 1, 1, 1; 1, 2, 1, 1; 1, 2, 2, 1, 1; 1, 3, 4, 3, 1, 1; 1, 3, 5, 5, 3, 1, 1; 1, 4, 7, 10, 7, 4, 1, 1; 1, 4, 10, 14, 14, 10, 4, 1, 1; 1, 5, 12, 22, 26, 22, 12, 5, 1, 1; 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1; T(6,3) = 4, since there are 4 essentially different ways 1+1+4, 1+2+3, 1+3+2 and 2+2+2 of expressing 6 as a sum of 3 summands (all others can be obtained by cyclically permuting the summands in one of the above sums).
References
- N. Zagaglia Salvi, Ordered partitions and colourings of cycles and necklaces, Bull. Inst. Combin. Appl., 27 (1999), 37-40.
Links
- Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
- Ethan Akin and Morton Davis, Bulgarian solitaire, Am. Math. Monthly 92 (4) (1985) 237-250.
- R. Baumann, Computer-Knobelei, , LOGIN, 163/164 (2010), 141-142 (in German).
- R. Bekes, J. Pedersen and B. Shao, Mad tea party cyclic partitions, College Math. J., 43 (2012), 24-36.
- A. Elashvili and M. Jibladze, Hermite reciprocity for the regular representations of cyclic groups, Indag. Math. (N.S.) 9 (1998), no. 2, 233-238. MR1691428 (2000c:13006)
- A. Elashvili, M. Jibladze, and D. Pataraia, Combinatorics of necklaces and "Hermite reciprocity", J. Algebraic Combin. 10 (1999), no. 2, 173-188. MR1719140 (2000j:05009). See p. 174. - _N. J. A. Sloane_, Aug 06 2014
- Petros Hadjicostas, Cyclic Compositions of a Positive Integer with Parts Avoiding an Arithmetic Sequence, Journal of Integer Sequences, 19 (2016), Article 16.8.2.
- Arnold Knopfmacher and Neville Robbins, Some Properties of Cyclic Compositions, Fibonacci Quart. 48 (2010), no. 3, 249-255.
- D. M. Y. Sommerville, On Certain Periodic Properties of Cyclic Compositions of Numbers, Proc. London Math. Soc., s2-7, No. 1 (1909), 263-313.
- R. Razen, J. Seberry, and K. Wehrhahn, Ordered partitions and codes generated by circulant matrices, J. Combin. Theory Ser. A, 27 (1979), 333-341.
- D. Wasserman, Proof of the symmetry [Broken link]
- D. Wasserman, Proof of the symmetry [Cached copy]
Crossrefs
Programs
-
Haskell
a037306 n k = div (sum $ map f $ a027750_row $ gcd n k) n where f d = a000010 d * a007318' (div n d) (div k d) a037306_row n = map (a037306 n) [1..n] a037306_tabl = map a037306_row [1..] -- Reinhard Zumkeller, Feb 06 2014
-
Maple
A037306 := proc(n,k) local a,d; a := 0; for d in numtheory[divisors]( igcd(n,k)) do a := a+numtheory[phi](d)*binomial(n/d,k/d); end do: a/n; end proc: seq(seq(A037306(n,k), k=1..n), n=1..20); # R. J. Mathar, Jun 11 2011
-
Mathematica
t[n_, k_] := Total[EulerPhi[#]*Binomial[n/#, k/#] & /@ Divisors[GCD[n, k]]]/n; Flatten[Table[t[n, k], {n, 13}, {k, n}]] (* Jean-François Alcover, Sep 08 2011, after formula *) nn=15;f[list_]:=Select[list,#>0&];Map[f,Transpose[Table[Drop[CoefficientList[Series[CycleIndex[CyclicGroup[n],s]/.Table[s[i]->x^i/(1-x^i),{i,1,n}],{x,0,nn}],x],1],{n,1,nn}]]]//Grid (* Geoffrey Critzer, Oct 30 2012 *)
-
PARI
T(n, k) = sumdiv(gcd(n,k), d, eulerphi(d)*binomial(n/d, k/d))/n; \\ Michel Marcus, Feb 10 2016
Formula
T(n,k) = (Sum_{d|gcd(n,k)} phi(d)*binomial(n/d,k/d))/n, where phi = A000010 = Euler's totient function. Also T(n,k) = A047996(n,k). - Paul Weisenhorn, Apr 06 2011
Extensions
More terms from David Wasserman, Mar 11 2002
Comments, reference, example from Paul Weisenhorn, Dec 18 2010
Comments