cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A037396 Numbers k such that every base-5 digit of k is a base-9 digit of k.

Original entry on oeis.org

1, 2, 3, 4, 11, 22, 93, 121, 124, 126, 156, 181, 199, 317, 362, 598, 750, 751, 752, 755, 756, 758, 768, 770, 771, 775, 776, 780, 781, 785, 796, 812, 831, 841, 843, 849, 859, 895, 900, 906, 907, 911, 912, 918, 922, 927, 931, 932
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List ((\\), nub)
    a037396 n = a037396_list !! (n-1)
    a037396_list = filter f [1..] where
       f x = null $ nub (ds 5 x) \\ nub (ds 9 x)
       ds b x = if x > 0 then d : ds b x' else []  where (x', d) = divMod x b
    -- Reinhard Zumkeller, May 30 2013
    
  • PARI
    is(n)=#setminus(Set(digits(n,5)), Set(digits(n,9)))==0 \\ Charles R Greathouse IV, Feb 11 2017

A037393 Numbers k such that every base-5 digit of k is a base-6 digit of k.

Original entry on oeis.org

1, 2, 3, 4, 6, 12, 18, 24, 31, 46, 56, 62, 75, 81, 87, 90, 91, 92, 93, 94, 99, 118, 124, 145, 150, 157, 226, 232, 243, 245, 291, 300, 306, 307, 308, 311, 312, 314, 322, 326, 332, 336, 337, 338, 341, 362, 372, 374, 378, 411, 416, 418
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List ((\\), nub)
    a037393 n = a037393_list !! (n-1)
    a037393_list = filter f [1..] where
       f x = null $ nub (ds 5 x) \\ nub (ds 6 x)
       ds b x = if x > 0 then d : ds b x' else []  where (x', d) = divMod x b
    -- Reinhard Zumkeller, May 30 2013

A037395 Numbers k such that every base-5 digit of k is a base-8 digit of k.

Original entry on oeis.org

1, 2, 3, 4, 83, 91, 93, 99, 124, 136, 161, 200, 206, 272, 314, 467, 524, 532, 540, 545, 546, 549, 609, 643, 656, 672, 680, 705, 706, 708, 770, 771, 774, 775, 776, 781, 784, 786, 787, 789, 793, 794, 796, 798, 799, 843, 871, 906
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List ((\\), nub)
    a037395 n = a037395_list !! (n-1)
    a037395_list = filter f [1..] where
       f x = null $ nub (ds 5 x) \\ nub (ds 8 x)
       ds b x = if x > 0 then d : ds b x' else []  where (x', d) = divMod x b
    -- Reinhard Zumkeller, May 30 2013
  • Mathematica
    Select[Range[1000],SubsetQ[IntegerDigits[#,8],IntegerDigits[#,5]]&] (* Harvey P. Dale, Oct 13 2015 *)

A037397 Every base 5 digit of n is a base 10 digit of n.

Original entry on oeis.org

1, 2, 3, 4, 12, 24, 31, 62, 93, 104, 124, 130, 150, 156, 162, 174, 182, 213, 250, 260, 281, 302, 312, 324, 342, 390, 473, 493, 504, 604, 624, 781, 812, 831, 912, 1003, 1030, 1031, 1032, 1033, 1034, 1043, 1083, 1093, 1174, 1234, 1243
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List ((\\), nub)
    a037397 n = a037397_list !! (n-1)
    a037397_list = filter f [1..] where
       f x = null $ nub (ds 5 x) \\ nub (ds 10 x)
       ds b x = if x > 0 then d : ds b x' else []  where (x', d) = divMod x b
    -- Reinhard Zumkeller, May 30 2013

A037430 Positive numbers having the same set of digits in base 5 and base 7.

Original entry on oeis.org

1, 2, 3, 4, 17, 51, 66, 102, 416, 423, 557, 687, 697, 739, 785, 842, 889, 1030, 1078, 1087, 1109, 1233, 1374, 1439, 1444, 1477, 1481, 1492, 1499, 1570, 2527, 2566, 2576, 2580, 2601, 2605, 2611, 2625, 2626, 2627, 2628, 2629, 2811, 2871, 2916
Offset: 1

Views

Author

Keywords

Examples

			423 is in the sequence because 423 in base 5 is 3413 and in base 7 it is 1143.
		

Crossrefs

Subsequence of A037394.

Programs

  • Maple
    a:=proc(n) if convert(convert(n,base,5),set)=convert(convert(n,base,7),set) then n else fi end: seq(a(n),n=1..3000); # Emeric Deutsch, Apr 30 2006
  • Mathematica
    Select[Range[3000],Union[IntegerDigits[#,5]]==Union[IntegerDigits[#,7]]&] (* Harvey P. Dale, Mar 06 2012 *)
  • PARI
    is(n)=Set(digits(n, 5))==Set(digits(n, 7)) \\ Charles R Greathouse IV, Feb 11 2017

Extensions

More terms from Don Reble, Apr 28 2006
Name edited by John Cerkan, Feb 09 2017
Showing 1-5 of 5 results.