cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A037396 Numbers k such that every base-5 digit of k is a base-9 digit of k.

Original entry on oeis.org

1, 2, 3, 4, 11, 22, 93, 121, 124, 126, 156, 181, 199, 317, 362, 598, 750, 751, 752, 755, 756, 758, 768, 770, 771, 775, 776, 780, 781, 785, 796, 812, 831, 841, 843, 849, 859, 895, 900, 906, 907, 911, 912, 918, 922, 927, 931, 932
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List ((\\), nub)
    a037396 n = a037396_list !! (n-1)
    a037396_list = filter f [1..] where
       f x = null $ nub (ds 5 x) \\ nub (ds 9 x)
       ds b x = if x > 0 then d : ds b x' else []  where (x', d) = divMod x b
    -- Reinhard Zumkeller, May 30 2013
    
  • PARI
    is(n)=#setminus(Set(digits(n,5)), Set(digits(n,9)))==0 \\ Charles R Greathouse IV, Feb 11 2017

A037393 Numbers k such that every base-5 digit of k is a base-6 digit of k.

Original entry on oeis.org

1, 2, 3, 4, 6, 12, 18, 24, 31, 46, 56, 62, 75, 81, 87, 90, 91, 92, 93, 94, 99, 118, 124, 145, 150, 157, 226, 232, 243, 245, 291, 300, 306, 307, 308, 311, 312, 314, 322, 326, 332, 336, 337, 338, 341, 362, 372, 374, 378, 411, 416, 418
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List ((\\), nub)
    a037393 n = a037393_list !! (n-1)
    a037393_list = filter f [1..] where
       f x = null $ nub (ds 5 x) \\ nub (ds 6 x)
       ds b x = if x > 0 then d : ds b x' else []  where (x', d) = divMod x b
    -- Reinhard Zumkeller, May 30 2013

A037394 Numbers k such that every base-5 digit of k is a base-7 digit of k.

Original entry on oeis.org

1, 2, 3, 4, 17, 51, 66, 102, 109, 123, 156, 158, 162, 206, 218, 312, 317, 324, 361, 381, 416, 418, 423, 458, 462, 463, 466, 467, 468, 472, 494, 518, 545, 546, 549, 556, 557, 559, 562, 584, 606, 619, 621, 630, 640, 651, 658, 687
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List ((\\), nub)
    a037394 n = a037394_list !! (n-1)
    a037394_list = filter f [1..] where
       f x = null $ nub (ds 5 x) \\ nub (ds 7 x)
       ds b x = if x > 0 then d : ds b x' else []  where (x', d) = divMod x b
    -- Reinhard Zumkeller, May 30 2013
  • Mathematica
    Select[Range[700],SubsetQ[IntegerDigits[#,7],IntegerDigits[#,5]]&] (* Harvey P. Dale, Sep 29 2017 *)

A037395 Numbers k such that every base-5 digit of k is a base-8 digit of k.

Original entry on oeis.org

1, 2, 3, 4, 83, 91, 93, 99, 124, 136, 161, 200, 206, 272, 314, 467, 524, 532, 540, 545, 546, 549, 609, 643, 656, 672, 680, 705, 706, 708, 770, 771, 774, 775, 776, 781, 784, 786, 787, 789, 793, 794, 796, 798, 799, 843, 871, 906
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List ((\\), nub)
    a037395 n = a037395_list !! (n-1)
    a037395_list = filter f [1..] where
       f x = null $ nub (ds 5 x) \\ nub (ds 8 x)
       ds b x = if x > 0 then d : ds b x' else []  where (x', d) = divMod x b
    -- Reinhard Zumkeller, May 30 2013
  • Mathematica
    Select[Range[1000],SubsetQ[IntegerDigits[#,8],IntegerDigits[#,5]]&] (* Harvey P. Dale, Oct 13 2015 *)

A037433 Positive numbers having the same set of digits in base 5 and base 10.

Original entry on oeis.org

1, 2, 3, 4, 213, 1003, 1030, 1420, 1421, 1422, 1423, 1424, 2013, 2130, 2203, 2243, 2300, 2301, 2302, 2303, 2304, 2311, 2324, 2413, 2431, 2443, 3210, 4021, 4102, 4112, 4120, 4121, 4122, 4123, 4124, 4331, 4341, 10003, 10030, 10031, 10032
Offset: 1

Views

Author

Keywords

Examples

			1422 is in the sequence because 1422 in base 5 is 21142.
		

Crossrefs

Subsequence of A037397.

Programs

  • Mathematica
    Select[Range[11000],Union[IntegerDigits[#]]==Union[IntegerDigits[#,5]]&] (* Harvey P. Dale, Aug 16 2014 *)

Extensions

More terms from Don Reble, Apr 28 2006
Edited by John Cerkan, Feb 13 2017
Showing 1-5 of 5 results.