A037444 Number of partitions of n^2 into squares.
1, 1, 2, 4, 8, 19, 43, 98, 220, 504, 1116, 2468, 5368, 11592, 24694, 52170, 108963, 225644, 462865, 941528, 1899244, 3801227, 7550473, 14889455, 29159061, 56722410, 109637563, 210605770, 402165159, 763549779, 1441686280, 2707535748, 5058654069, 9404116777
Offset: 0
Links
- T. D. Noe, Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..945 (terms n = 0..100 from T. D. Noe, terms n = 101..500 from Alois P. Heinz)
- J. Bohman et al., Partitions in squares, Nordisk Tidskr. Informationsbehandling (BIT) 19 (1979), 297-301.
- H. L. Fisher, Letter to N. J. A. Sloane, Mar 16 1989
- G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proceedings of the London Mathematical Society, 2, XVI, 1917, p. 373.
Crossrefs
Programs
-
Haskell
a037444 n = p (map (^ 2) [1..]) (n^2) where p _ 0 = 1 p ks'@(k:ks) m | m < k = 0 | otherwise = p ks' (m - k) + p ks m -- Reinhard Zumkeller, Aug 14 2011
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1, b(n, i-1) +`if`(i^2>n, 0, b(n-i^2, i))) end: a:= n-> b(n^2, n): seq(a(n), n=0..40); # Alois P. Heinz, Apr 15 2013
-
Mathematica
max=33; se = Series[ Product[1/(1-x^(k^2)), {k, 1, max}], {x, 0, max^2}]; a[n_] := Coefficient[se, x^(n^2)]; a[0] = 1; Table[a[n], {n, 0, max}] (* Jean-François Alcover, Oct 18 2011 *)
Formula
a(n) = A001156(n^2) = coefficient of x^(n^2) in the series expansion of Prod_{k>=1} 1/(1 - x^(k^2)).
a(n) ~ 3^(-1/2) * (4*Pi)^(-7/6) * Zeta(3/2)^(2/3) * n^(-7/3) * exp(2^(-4/3) * 3 * Pi^(1/3) * Zeta(3/2)^(2/3) * n^(2/3)) [Hardy & Ramanujan, 1917, modified from A001156]. - Vaclav Kotesovec, Dec 29 2016
Comments