A037497 Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,2.
1, 4, 18, 73, 292, 1170, 4681, 18724, 74898, 299593, 1198372, 4793490, 19173961, 76695844, 306783378, 1227133513, 4908534052, 19634136210, 78536544841, 314146179364, 1256584717458, 5026338869833, 20105355479332, 80421421917330
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,0,1,-4).
Programs
-
Magma
I:=[1, 4, 18, 73]; [n le 4 select I[n] else 4*Self(n-1)+Self(n-3)-4*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 22 2012
-
Mathematica
LinearRecurrence[{4, 0, 1, -4}, {1, 4, 18, 73}, 40] (* or *) CoefficientList[Series[(1 + 2 x^2)/((1 - x)(1 - 4 x) (1 + x + x^2)),{x,0,40}],x] (* Vincenzo Librandi, Jun 22 2012 *)
-
Python
print([2*4**n//7 for n in range(1, 25)]) # Karl V. Keller, Jr., Sep 22 2020
Formula
From Vincenzo Librandi, Jun 22 2012: (Start)
G.f.: x*(1+2*x^2)/((1-x)*(1-4*x)*(1+x+x^2)).
a(n) = 4*a(n-1) + a(n-3) - 4*a(n-4). (End)
a(n) = floor(2*4^n/7). - Karl V. Keller, Jr., Sep 22 2020
Comments