A261672
Numbers k such that A037610(k) is prime.
Original entry on oeis.org
4, 7, 52, 100, 136, 388, 30940, 33250
Offset: 1
A037610(7) = 1231231 is prime, so 7 is a term of the sequence.
-
Select[Range@ 500, PrimeQ@ Floor[41/333*10^#] &] (* Michael De Vlieger, Sep 07 2015 *)
-
a037610(n) = 10^n*41\333
is(n) = ispseudoprime(a037610(n))
A057137
Concatenate next digit at right hand end (where the next digit after 9 is again 0).
Original entry on oeis.org
0, 1, 12, 123, 1234, 12345, 123456, 1234567, 12345678, 123456789, 1234567890, 12345678901, 123456789012, 1234567890123, 12345678901234, 123456789012345, 1234567890123456, 12345678901234567, 123456789012345678, 1234567890123456789, 12345678901234567890, 123456789012345678901
Offset: 0
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 61.
- T. D. Noe and Hieronymus Fischer, Table of n, a(n) for n = 0..200 (terms up to 100 from T. D. Noe)
- Clifford Pickover, Triangle of the Gods
- Index entries for linear recurrences with constant coefficients, signature (10,0,0,0,0,0,0,0,0,1,-10).
Alternative progression for n >= 10 compared with
A007908 and
A014824.
-
A057137:=n->floor((137174210/1111111111)*10^n); seq(A057137(n), n=0..20); # Wesley Ivan Hurt, Apr 18 2014
-
a[n_]:=Floor[137174210/1111111111*10^n]; Array[a,19,0] (* Robert G. Wilson v, Apr 18 2014 *)
-
A057137(n)=sum(i=1,n,i%10*10^(n-i)) \\ M. F. Hasler, Jan 13 2013
-
A057137(n)=137174210*10^n\1111111111 \\ M. F. Hasler, Jan 13 2013
-
def A057137(n): s = '0123456789'; return int((n+1)//10*s + s[:(n+1)%10]) # Ya-Ping Lu, Apr 08 2025
A037487
Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,2.
Original entry on oeis.org
1, 12, 121, 1212, 12121, 121212, 1212121, 12121212, 121212121, 1212121212, 12121212121, 121212121212, 1212121212121, 12121212121212, 121212121212121, 1212121212121212, 12121212121212121, 121212121212121212, 1212121212121212121, 12121212121212121212
Offset: 1
-
Table[FromDigits[PadRight[{},n,{1,2}]],{n,20}] (* or *) LinearRecurrence[ {10,1,-10},{1,12,121},20] (* Harvey P. Dale, Jun 21 2016 *)
-
A037487(n)=10^n*4\33 \\ - M. F. Hasler, Jan 13 2013
-
Vec(x*(2*x+1)/((x-1)*(x+1)*(10*x-1)) + O(x^100)) \\ Colin Barker, Apr 30 2014
A037604
Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3.
Original entry on oeis.org
1, 6, 27, 109, 438, 1755, 7021, 28086, 112347, 449389, 1797558, 7190235, 28760941, 115043766, 460175067, 1840700269, 7362801078, 29451204315, 117804817261, 471219269046, 1884877076187, 7539508304749, 30158033218998
Offset: 1
-
Rest@ CoefficientList[Series[x (1 + 2 x + 3 x^2)/((1 - x) (1 - 4 x) (1 + x + x^2)), {x, 0, 23}], x] (* Michael De Vlieger, Mar 19 2021 *)
Table[FromDigits[PadRight[{},n,{1,2,3}],4],{n,30}] (* or *) LinearRecurrence[{4,0,1,-4},{1,6,27,109},30] (* Harvey P. Dale, May 07 2023 *)
-
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -4,1,0,4]^(n-1)*[1;6;27;109])[1,1] \\ Charles R Greathouse IV, Feb 13 2017
-
print([3*4**n//7 for n in range(1,24)]) # Karl V. Keller, Jr., Mar 18 2021
A037608
Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3.
Original entry on oeis.org
1, 10, 83, 665, 5322, 42579, 340633, 2725066, 21800531, 174404249, 1395233994, 11161871955, 89294975641, 714359805130, 5714878441043, 45719027528345, 365752220226762, 2926017761814099, 23408142094512793, 187265136756102346, 1498121094048818771
Offset: 1
1, 10, 83, 665, 5322, ... in base 8 are 1, 12, 123, 1231, 12312, ...
-
Table[FromDigits[PadRight[{},n,{1,2,3}],8],{n,30}] (* Harvey P. Dale, Apr 06 2022 *)
-
Vec(x*(3*x^2+2*x+1)/((x-1)*(8*x-1)*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Nov 28 2014
A037605
Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3.
Original entry on oeis.org
1, 7, 38, 191, 957, 4788, 23941, 119707, 598538, 2992691, 14963457, 74817288, 374086441, 1870432207, 9352161038, 46760805191, 233804025957, 1169020129788, 5845100648941, 29225503244707, 146127516223538, 730637581117691
Offset: 1
-
Table[FromDigits[PadRight[{},n,{1,2,3}],5],{n,30}] (* or *) LinearRecurrence[{5,0,1,-5},{1,7,38,191},30] (* Harvey P. Dale, Oct 16 2024 *)
-
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -5,1,0,5]^(n-1)*[1;7;38;191])[1,1] \\ Charles R Greathouse IV, Feb 13 2017
A037606
Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3.
Original entry on oeis.org
1, 8, 51, 307, 1844, 11067, 66403, 398420, 2390523, 14343139, 86058836, 516353019, 3098118115, 18588708692, 111532252155, 669193512931, 4015161077588, 24090966465531, 144545798793187, 867274792759124, 5203648756554747
Offset: 1
-
nn=30;With[{c=PadRight[{},nn,{1,2,3}]},Table[FromDigits[Take[c,n],6],{n,nn}]] (* Harvey P. Dale, Aug 25 2012 *)
-
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -6,1,0,6]^(n-1)*[1;8;51;307])[1,1] \\ Charles R Greathouse IV, Feb 13 2017
A037609
Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3.
Original entry on oeis.org
1, 11, 102, 919, 8273, 74460, 670141, 6031271, 54281442, 488532979, 4396796813, 39571171320, 356140541881, 3205264876931, 28847383892382, 259626455031439, 2336638095282953
Offset: 1
-
Table[FromDigits[PadRight[{},n,{1,2,3}],9],{n,20}] (* or *) LinearRecurrence[{9,0,1,-9},{1,11,102,919},20] (* Harvey P. Dale, Nov 16 2024 *)
-
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -9,1,0,9]^(n-1)*[1;11;102;919])[1,1] \\ Charles R Greathouse IV, Feb 13 2017
Showing 1-8 of 8 results.
Comments