cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A261672 Numbers k such that A037610(k) is prime.

Original entry on oeis.org

4, 7, 52, 100, 136, 388, 30940, 33250
Offset: 1

Views

Author

Felix Fröhlich, Sep 04 2015

Keywords

Comments

The terms are a subset of the terms of A016777, since a term of A037610 can only be prime if it is congruent to 1 modulo 10 and hence congruent to 1 modulo 3. If A037610(k) is congruent to 1 modulo 3, then k is congruent to 1 modulo 3 as well.
No further terms up to 10000.

Examples

			A037610(7) = 1231231 is prime, so 7 is a term of the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 500, PrimeQ@ Floor[41/333*10^#] &] (* Michael De Vlieger, Sep 07 2015 *)
  • PARI
    a037610(n) = 10^n*41\333
    is(n) = ispseudoprime(a037610(n))

Extensions

a(7)-a(8) from Michael S. Branicky, Jun 28 2023

A057137 Concatenate next digit at right hand end (where the next digit after 9 is again 0).

Original entry on oeis.org

0, 1, 12, 123, 1234, 12345, 123456, 1234567, 12345678, 123456789, 1234567890, 12345678901, 123456789012, 1234567890123, 12345678901234, 123456789012345, 1234567890123456, 12345678901234567, 123456789012345678, 1234567890123456789, 12345678901234567890, 123456789012345678901
Offset: 0

Views

Author

Henry Bottomley, Aug 12 2000

Keywords

Comments

Also called the triangle of the gods (see Pickover link).
See A037610 for a general formula. - Hieronymus Fischer, Jan 03 2013

References

  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 61.

Crossrefs

Alternative progression for n >= 10 compared with A007908 and A014824.
Cf. A057138 for reverse. Cf. A010879 (decimal digits).
For primes see A120819.

Programs

Formula

a(n) = 10*(a(n-1)-floor[n/10]) + n = floor[A057139(n)/10^(n-1)].
a(n) = floor((137174210/1111111111)*10^n). - Hieronymus Fischer, Jan 03 2013, corrected by M. F. Hasler, Jan 13 2013

A037487 Decimal expansion of a(n) is given by the first n terms of the periodic sequence with initial period 1,2.

Original entry on oeis.org

1, 12, 121, 1212, 12121, 121212, 1212121, 12121212, 121212121, 1212121212, 12121212121, 121212121212, 1212121212121, 12121212121212, 121212121212121, 1212121212121212, 12121212121212121, 121212121212121212, 1212121212121212121, 12121212121212121212
Offset: 1

Views

Author

Keywords

Comments

See A037610 for a general formula. - Hieronymus Fischer, Jan 03 2013
(Smoothly undulating palindromic) primes in this sequence are listed in A092696(n) = (4*10^A062209(n)-7)/33. - M. F. Hasler, Jul 30 2015

Crossrefs

Cf. A037610.

Programs

  • Mathematica
    Table[FromDigits[PadRight[{},n,{1,2}]],{n,20}] (* or *) LinearRecurrence[ {10,1,-10},{1,12,121},20] (* Harvey P. Dale, Jun 21 2016 *)
  • PARI
    A037487(n)=10^n*4\33  \\ - M. F. Hasler, Jan 13 2013
    
  • PARI
    Vec(x*(2*x+1)/((x-1)*(x+1)*(10*x-1)) + O(x^100)) \\ Colin Barker, Apr 30 2014

Formula

a(n) = floor((4/33)*10^n). - Hieronymus Fischer, Jan 03 2013
a(n) = 10*a(n-1)+a(n-2)-10*a(n-3). G.f.: x*(2*x+1) / ((x-1)*(x+1)*(10*x-1)). - Colin Barker, Apr 30 2014

A037604 Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3.

Original entry on oeis.org

1, 6, 27, 109, 438, 1755, 7021, 28086, 112347, 449389, 1797558, 7190235, 28760941, 115043766, 460175067, 1840700269, 7362801078, 29451204315, 117804817261, 471219269046, 1884877076187, 7539508304749, 30158033218998
Offset: 1

Views

Author

Keywords

Comments

Convolution of A000302 with A010882. - Philippe Deléham, Mar 24 2013

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[Series[x (1 + 2 x + 3 x^2)/((1 - x) (1 - 4 x) (1 + x + x^2)), {x, 0, 23}], x] (* Michael De Vlieger, Mar 19 2021 *)
    Table[FromDigits[PadRight[{},n,{1,2,3}],4],{n,30}] (* or *) LinearRecurrence[{4,0,1,-4},{1,6,27,109},30] (* Harvey P. Dale, May 07 2023 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -4,1,0,4]^(n-1)*[1;6;27;109])[1,1] \\ Charles R Greathouse IV, Feb 13 2017
    
  • Python
    print([3*4**n//7 for n in range(1,24)]) # Karl V. Keller, Jr., Mar 18 2021

Formula

G.f.: x*(1+2x+3*x^2)/((1-x)*(1-4x)*(1+x+x^2)). - Philippe Deléham, Mar 24 2013
a(n) = 4*a(n-1) + a(n-3) -4*a(n-4) for n > 5, a(1) = 1, a(2) = 6, a(3) = 27, a(4) = 109, a(5) = 438. - Philippe Deléham, Mar 24 2013
a(n+2) = 6*A033140(n) + A191597(n+2). - Philippe Deléham, Mar 24 2013
A007090(a(n)) = A037610(n). - R. J. Mathar, Apr 27 2015
a(n) = floor(3*4^n/7). - Karl V. Keller, Jr., Mar 18 2021

A037608 Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3.

Original entry on oeis.org

1, 10, 83, 665, 5322, 42579, 340633, 2725066, 21800531, 174404249, 1395233994, 11161871955, 89294975641, 714359805130, 5714878441043, 45719027528345, 365752220226762, 2926017761814099, 23408142094512793, 187265136756102346, 1498121094048818771
Offset: 1

Views

Author

Keywords

Examples

			1, 10, 83, 665, 5322, ... in base 8 are 1, 12, 123, 1231, 12312, ...
		

Crossrefs

Cf. A037610.

Programs

  • Mathematica
    Table[FromDigits[PadRight[{},n,{1,2,3}],8],{n,30}] (* Harvey P. Dale, Apr 06 2022 *)
  • PARI
    Vec(x*(3*x^2+2*x+1)/((x-1)*(8*x-1)*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Nov 28 2014

Formula

a(n) = 8*a(n-1)+a(n-3)-8*a(n-4). - Colin Barker, Nov 28 2014
G.f.: x*(3*x^2+2*x+1) / ((x-1)*(8*x-1)*(x^2+x+1)). - Colin Barker, Nov 28 2014

A037605 Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3.

Original entry on oeis.org

1, 7, 38, 191, 957, 4788, 23941, 119707, 598538, 2992691, 14963457, 74817288, 374086441, 1870432207, 9352161038, 46760805191, 233804025957, 1169020129788, 5845100648941, 29225503244707, 146127516223538, 730637581117691
Offset: 1

Views

Author

Keywords

Programs

  • Mathematica
    Table[FromDigits[PadRight[{},n,{1,2,3}],5],{n,30}] (* or *) LinearRecurrence[{5,0,1,-5},{1,7,38,191},30] (* Harvey P. Dale, Oct 16 2024 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -5,1,0,5]^(n-1)*[1;7;38;191])[1,1] \\ Charles R Greathouse IV, Feb 13 2017

Formula

G.f.: x*(1+2*x+3*x^2) / ( (x-1)*(5*x-1)*(1+x+x^2) ). - R. J. Mathar, Apr 27 2015
A007091(a(n)) = A037610(n). - R. J. Mathar, Apr 27 2015

A037606 Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3.

Original entry on oeis.org

1, 8, 51, 307, 1844, 11067, 66403, 398420, 2390523, 14343139, 86058836, 516353019, 3098118115, 18588708692, 111532252155, 669193512931, 4015161077588, 24090966465531, 144545798793187, 867274792759124, 5203648756554747
Offset: 1

Views

Author

Keywords

Programs

  • Mathematica
    nn=30;With[{c=PadRight[{},nn,{1,2,3}]},Table[FromDigits[Take[c,n],6],{n,nn}]] (* Harvey P. Dale, Aug 25 2012 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -6,1,0,6]^(n-1)*[1;8;51;307])[1,1] \\ Charles R Greathouse IV, Feb 13 2017

Formula

G.f.: x*(1+2*x+3*x^2) / ( (x-1)*(6*x-1)*(1+x+x^2) ). - R. J. Mathar, Apr 27 2015
A007092(a(n)) = A037610(n). - R. J. Mathar, Apr 27 2015

A037609 Base 9 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3.

Original entry on oeis.org

1, 11, 102, 919, 8273, 74460, 670141, 6031271, 54281442, 488532979, 4396796813, 39571171320, 356140541881, 3205264876931, 28847383892382, 259626455031439, 2336638095282953
Offset: 1

Views

Author

Keywords

Programs

  • Mathematica
    Table[FromDigits[PadRight[{},n,{1,2,3}],9],{n,20}] (* or *) LinearRecurrence[{9,0,1,-9},{1,11,102,919},20] (* Harvey P. Dale, Nov 16 2024 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -9,1,0,9]^(n-1)*[1;11;102;919])[1,1] \\ Charles R Greathouse IV, Feb 13 2017

Formula

G.f.: x*(1+2*x+3*x^2) / ( (x-1)*(9*x-1)*(1+x+x^2) ). - R. J. Mathar, Apr 27 2015
A007095(a(n)) = A037610(n). - R. J. Mathar, Apr 27 2015
Showing 1-8 of 8 results.