A037800 Number of occurrences of 01 in the binary expansion of n.
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 2, 2, 2, 2, 3, 2, 2, 1, 2, 2, 2, 1, 2, 1, 1, 0, 1, 1, 1, 1, 2, 1
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Jean-Paul Allouche and Jeffrey Shallit, Sums of digits and the Hurwitz zeta function, in: K. Nagasaka and E. Fouvry (eds.), Analytic Number Theory, Lecture Notes in Mathematics, Vol. 1434, Springer, Berlin, Heidelberg, 1990, pp. 19-30.
- Ralf Stephan, Some divide-and-conquer sequences with (relatively) simple ordinary generating functions, 2004.
- Ralf Stephan, Table of generating functions.
- Eric Weisstein's World of Mathematics, Digit Block.
- Index entries for sequences related to binary expansion of n
Crossrefs
Programs
-
Haskell
a037800 = f 0 . a030308_row where f c [_] = c f c (1 : 0 : bs) = f (c + 1) bs f c (_ : bs) = f c bs -- Reinhard Zumkeller, Feb 20 2014
-
Mathematica
Table[SequenceCount[IntegerDigits[n,2],{0,1}],{n,0,120}] (* Harvey P. Dale, Aug 10 2023 *)
-
PARI
a(n) = { if(n == 0, 0, -1 + hammingweight(bitnegimply(n, n>>1))) }; \\ Gheorghe Coserea, Aug 31 2015
Formula
a(2n) = a(n), a(2n+1) = a(n) + [n is even]. - Ralf Stephan, Aug 21 2003
G.f.: 1/(1-x) * Sum_{k>=0} t^5/(1+t)/(1+t^2) where t=x^2^k. - Ralf Stephan, Sep 10 2003
a(n) = A069010(n) - 1, n>0. - Ralf Stephan, Sep 10 2003
Sum_{n>=1} a(n)/(n*(n+1)) = log(2)/2 + Pi/4 - 1 = A231902 - 1 (Allouche and Shallit, 1990). - Amiram Eldar, Jun 01 2021
Comments