cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037800 Number of occurrences of 01 in the binary expansion of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 2, 2, 2, 2, 3, 2, 2, 1, 2, 2, 2, 1, 2, 1, 1, 0, 1, 1, 1, 1, 2, 1
Offset: 0

Views

Author

Keywords

Comments

Number of i such that d(i)>d(i-1), where Sum{d(i)*2^i: i=0,1,...,m} is base 2 representation of n.
This is the base-2 up-variation sequence; see A297330. - Clark Kimberling, Jan 18 2017

Crossrefs

Programs

  • Haskell
    a037800 = f 0 . a030308_row where
       f c [_]          = c
       f c (1 : 0 : bs) = f (c + 1) bs
       f c (_ : bs)     = f c bs
    -- Reinhard Zumkeller, Feb 20 2014
    
  • Mathematica
    Table[SequenceCount[IntegerDigits[n,2],{0,1}],{n,0,120}] (* Harvey P. Dale, Aug 10 2023 *)
  • PARI
    a(n) = { if(n == 0, 0, -1 + hammingweight(bitnegimply(n, n>>1))) };  \\ Gheorghe Coserea, Aug 31 2015

Formula

a(2n) = a(n), a(2n+1) = a(n) + [n is even]. - Ralf Stephan, Aug 21 2003
G.f.: 1/(1-x) * Sum_{k>=0} t^5/(1+t)/(1+t^2) where t=x^2^k. - Ralf Stephan, Sep 10 2003
a(n) = A069010(n) - 1, n>0. - Ralf Stephan, Sep 10 2003
Sum_{n>=1} a(n)/(n*(n+1)) = log(2)/2 + Pi/4 - 1 = A231902 - 1 (Allouche and Shallit, 1990). - Amiram Eldar, Jun 01 2021