A037896 Primes of the form k^4 + 1.
2, 17, 257, 1297, 65537, 160001, 331777, 614657, 1336337, 4477457, 5308417, 8503057, 9834497, 29986577, 40960001, 45212177, 59969537, 65610001, 126247697, 193877777, 303595777, 384160001, 406586897, 562448657, 655360001, 723394817, 916636177, 1049760001, 1416468497
Offset: 1
Examples
6^4 + 1 = 1297 is prime.
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
- Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
- M. Lal, Primes of the form n^4 + 1, Math. Comp. 21 (1967), pp. 245-247.
Crossrefs
Programs
-
Magma
[n^4+1: n in [1..200] | IsPrime(n^4+1)]; // G. C. Greubel, Apr 28 2019
-
Mathematica
Select[Range[200]^4+1,PrimeQ] (* Harvey P. Dale, Jul 20 2015 *)
-
PARI
j=[]; for(n=1,200, if(isprime(n^4+1),j=concat(j,n^4+1))); j
-
PARI
list(lim)=my(v=List([2]),p); forstep(k=2,sqrtnint(lim\1-1,4),2, if(isprime(p=k^4+1), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Mar 31 2022
-
Sage
[n^4+1 for n in (1..200) if is_prime(n^4+1)] # G. C. Greubel, Apr 28 2019
Formula
Extensions
Corrected and extended by Jason Earls, Jul 19 2001
Comments