A037916 Concatenate exponents in prime factorization of n.
0, 1, 1, 2, 1, 11, 1, 3, 2, 11, 1, 21, 1, 11, 11, 4, 1, 12, 1, 21, 11, 11, 1, 31, 2, 11, 3, 21, 1, 111, 1, 5, 11, 11, 11, 22, 1, 11, 11, 31, 1, 111, 1, 21, 21, 11, 1, 41, 2, 12, 11, 21, 1, 13, 11, 31, 11, 11, 1, 211, 1, 11, 21, 6, 11, 111, 1, 21, 11, 111, 1, 32, 1, 11, 12, 21, 11, 111
Offset: 1
Examples
12 = 2^2 * 3^1, so a(12) = 21.
Links
- Zak Seidov and Michael De Vlieger, Table of n, a(n) for n = 1..10000 (First 2000 terms from Zak Seidov)
- Wikipedia, Prime signature.
Programs
-
Mathematica
Join[{0},Table[FromDigits[Flatten[IntegerDigits/@Transpose[ FactorInteger[ n]][[2]]]],{n,2,80}]] (* Harvey P. Dale, Sep 29 2012 *)
-
PARI
A037916(n)=if( n>1, eval(concat(concat([""],factor(n)[,2]~)))) \\ M. F. Hasler, Apr 17 2008
-
Python
from sympy import factorint def a(n): return 0 if n<2 else int("".join(map(str, factorint(n).values()))) print([a(n) for n in range(1, 79)]) # Michael S. Branicky, Mar 18 2021
Extensions
More terms from Erich Friedman
Comments