cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037955 a(n) = binomial(n, floor(n/2)-1).

Original entry on oeis.org

0, 0, 1, 1, 4, 5, 15, 21, 56, 84, 210, 330, 792, 1287, 3003, 5005, 11440, 19448, 43758, 75582, 167960, 293930, 646646, 1144066, 2496144, 4457400, 9657700, 17383860, 37442160, 67863915, 145422675, 265182525, 565722720, 1037158320, 2203961430, 4059928950, 8597496600, 15905368710, 33578000610, 62359143990
Offset: 0

Views

Author

Keywords

Comments

Number of returns to the axis in all left factors of Dyck paths of length n. Example: a(4)=4 because in U(D)U(D), U(D)UU, UUD(D), UUDU, UUUD, and UUUU we have a total of 2+1+1+0+0+0=4 returns to the axis (shown between parentheses); here U=(1,1) and D=(1,-1). - Emeric Deutsch, Jun 06 2011
a(n) is the number of subsets of {1,2,...,n} that contain exactly 1 more even than odd elements. For example, a(6) = 15 and the 15 sets are {2}, {4}, {6}, {1,2,4}, {1,2,6}, {1,4,6}, {2,3,4}, {2,3,6}, {2,4,5}, {2,5,6}, {3,4,6}, {4,5,6}, {1,2,3,4,6}, {1,2,4,5,6}, {2,3,4,5,6}. - Enrique Navarrete, Dec 20 2019

Crossrefs

Programs

  • Magma
    [Binomial(n, Floor((n-2)/2)): n in [0..40]]; // G. C. Greubel, Dec 31 2019
    
  • Maple
    seq(binomial(n, floor((n-2)/2)), n = 0..40);
  • Mathematica
    Table[Binomial[n,Floor[n/2-1]], {n,0,40}] (* Wesley Ivan Hurt, Oct 16 2013 *)
  • PARI
    vector(41, n, binomial(n-1, (n-3)\2) ) \\ G. C. Greubel, Dec 31 2019
    
  • Sage
    [binomial(n, floor(n/2)-1) for n in (0..40)] # G. C. Greubel, Dec 31 2019

Formula

E.g.f.: Bessel_I(2,2*x) + Bessel_I(3,2*x). - Paul Barry, Feb 28 2006
G.f.: g(z) = z^2*c^3/(1-z*c), where c = (1-sqrt(1-4*z^2))/(2*z^2) is the Catalan function with argument z^2. - Emeric Deutsch, Jun 06 2011
(n+3)*(n-2)*a(n) +2*n*a(n-1) +4*n*(n-1)*a(n-2) = 0. - R. J. Mathar, Nov 30 2012
a(n) = binomial(n, (n-2)/2), n even; a(n) = binomial(n, (n-3)/2), n odd. - Enrique Navarrete, Dec 20 2019