A037955 a(n) = binomial(n, floor(n/2)-1).
0, 0, 1, 1, 4, 5, 15, 21, 56, 84, 210, 330, 792, 1287, 3003, 5005, 11440, 19448, 43758, 75582, 167960, 293930, 646646, 1144066, 2496144, 4457400, 9657700, 17383860, 37442160, 67863915, 145422675, 265182525, 565722720, 1037158320, 2203961430, 4059928950, 8597496600, 15905368710, 33578000610, 62359143990
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..3324
Programs
-
Magma
[Binomial(n, Floor((n-2)/2)): n in [0..40]]; // G. C. Greubel, Dec 31 2019
-
Maple
seq(binomial(n, floor((n-2)/2)), n = 0..40);
-
Mathematica
Table[Binomial[n,Floor[n/2-1]], {n,0,40}] (* Wesley Ivan Hurt, Oct 16 2013 *)
-
PARI
vector(41, n, binomial(n-1, (n-3)\2) ) \\ G. C. Greubel, Dec 31 2019
-
Sage
[binomial(n, floor(n/2)-1) for n in (0..40)] # G. C. Greubel, Dec 31 2019
Formula
E.g.f.: Bessel_I(2,2*x) + Bessel_I(3,2*x). - Paul Barry, Feb 28 2006
G.f.: g(z) = z^2*c^3/(1-z*c), where c = (1-sqrt(1-4*z^2))/(2*z^2) is the Catalan function with argument z^2. - Emeric Deutsch, Jun 06 2011
(n+3)*(n-2)*a(n) +2*n*a(n-1) +4*n*(n-1)*a(n-2) = 0. - R. J. Mathar, Nov 30 2012
a(n) = binomial(n, (n-2)/2), n even; a(n) = binomial(n, (n-3)/2), n odd. - Enrique Navarrete, Dec 20 2019
Comments