cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037958 a(n) = binomial(n, floor((n-8)/2)).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 10, 11, 66, 78, 364, 455, 1820, 2380, 8568, 11628, 38760, 54264, 170544, 245157, 735471, 1081575, 3124550, 4686825, 13123110, 20030010, 54627300, 84672315, 225792840
Offset: 0

Views

Author

Keywords

Programs

  • GAP
    List([0..40],n->Binomial(n,Int((n-8)/2))); # Muniru A Asiru, Jun 29 2018
  • Maple
    seq(binomial(n,floor((n-8)/2)), n=0..50); # Robert Israel, Jun 28 2018
  • Mathematica
    Table[Binomial[n,Floor[(n-8)/2]],{n,0,40}] (* Harvey P. Dale, Jun 11 2013 *)

Formula

Conjecture: -(n+9)*(n-8)*a(n) +2*(n)*a(n-1) +4*n*(n-1)*a(n-2)=0. - R. J. Mathar, Jul 26 2015, verified by Robert Israel, Jun 28 2018
From Robert Israel, Jun 28 2018: (Start)
E.g.f.: I_8(2*x)+I_9(2*x), where I_k is the modified Bessel function of the first kind and order k.
G.f.: 256*x^8/((1+sqrt(1-4*x^2))^8*sqrt(1-4*x^2)) + 512*x^9/((1+sqrt(1-4*x^2))^9*sqrt(1-4*x^2)). (End)