cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A037965 a(n) = n*binomial(2*n-2, n-1).

Original entry on oeis.org

0, 1, 4, 18, 80, 350, 1512, 6468, 27456, 115830, 486200, 2032316, 8465184, 35154028, 145608400, 601749000, 2481880320, 10218366630, 42004911960, 172427570700, 706905276000, 2894777105220, 11841673237680, 48394276165560, 197602337462400, 806190092077500
Offset: 0

Views

Author

Keywords

Comments

a(n+1) is the convolution of A000984 and A081294. - Paul Barry, Sep 18 2008

References

  • The right-hand side of a binomial coefficient identity in H. W. Gould, Combinatorial Identities, Morgantown, 1972.

Crossrefs

Cf. A000984, A001622, A081294, A109188 (inverse binomial transform).

Programs

  • Magma
    [0] cat [n^2*Catalan(n-1): n in [1..30]]; // G. C. Greubel, Jun 19 2022
    
  • Mathematica
    a[n_]:= n*Binomial[2*n-2, n-1]; Array[a, 30, 0] (* Amiram Eldar, Mar 10 2022 *)
  • PARI
    a(n) = n*binomial(2*n-2, n-1); \\ Joerg Arndt, Sep 04 2017
    
  • SageMath
    [n^2*catalan_number(n-1) for n in (0..30)] # G. C. Greubel, Jun 19 2022

Formula

Assuming offset -1 here and offset 0 in A134757, A134757 is the inverse binomial transform of this sequence. - Gary W. Adamson, Nov 08 2007
G.f.: Hypergeometric2F1([1/2, 2], [1], 4*x). - Paul Barry, Sep 03 2008
From Paul Barry, Sep 18 2008: (Start)
G.f.: x*(1-2*x)/(1-4*x)^(3/2);
a(n+1) = Sum_{k=0..n} binomial(2*k,k)*(4^(n-k) + 0^(n-k))/2. (End)
D-finite with recurrence (n-1)*a(n) - 2*(3*n-4)*a(n-1) + 4*(2*n-5)*a(n-2) = 0. - R. J. Mathar, Nov 30 2012
E.g.f.: x*exp(2*x)*BesselI(0,2*x). - Ilya Gutkovskiy, Aug 22 2018
a(n) = n*A000984(n-1). - R. J. Mathar, Nov 08 2021
From Amiram Eldar, Mar 10 2022: (Start)
Sum_{n>=1} 1/a(n) = 4*Pi/(3*sqrt(3)) - Pi^2/9.
Sum_{n>=1} (-1)^(n+1)/a(n) = 8*log(phi)/sqrt(5) - 4*log(phi)^2, where phi is the golden ratio (A001622). (End)

Extensions

More terms from Zerinvary Lajos, Oct 02 2007