A038048 a(n) = (n-1)! * sigma(n).
1, 3, 8, 42, 144, 1440, 5760, 75600, 524160, 6531840, 43545600, 1117670400, 6706022400, 149448499200, 2092278988800, 40537905408000, 376610217984000, 13871809695744000, 128047474114560000, 5109094217170944000
Offset: 1
Examples
a(6) = 5! * (1 + 2 + 3 + 6) = 1440 = 6! * (1 + 1/2 + 1/3 + 1/6).
References
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 56 (1.4.67).
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 159, #10, A(n,1).
Links
- T. D. Noe, Table of n, a(n) for n = 1..100
- Xiaojun Liu, Motohico Mulase, Adam Sorkin, Quantum curves for simple Hurwitz numbers of an arbitrary base curve, arXiv:1304.0015 [math.AG], 2013.
- H. Ochiai, Counting functions for branched covers of elliptic curves and quasi-modular forms, arXiv:math-ph/9909023, 1999.
Programs
-
Maple
a := n -> n!*add(1/j, j=numtheory:-divisors(n)): seq(a(n), n=1..23); # Emeric Deutsch, Jul 24 2005
-
Mathematica
a[n_] := (n-1)!*DivisorSigma[1, n]; Table[a[n], {n, 20}] (* Jean-François Alcover, Mar 23 2011 *)
-
PARI
a(n)=(n-1)!*sigma(n) \\ Charles R Greathouse IV, Mar 09 2014
-
Sage
A038048 = lambda n: factorial(n-1)*sigma(n,1) [A038048(n) for n in (1..20)] # Peter Luschny, Jan 19 2016
Formula
a(n) = Sum_{d|n} n!/d. - Amarnath Murthy, Jul 24 2005
a(p) = (p+1)*(p-1)! if p is a prime. - Amarnath Murthy, Jul 24 2005
E.g.f.: log(f(x)), where f(x) = o.g.f. for partitions (A000041), Product_{k>=1} 1/(1 - x^k). - N. J. A. Sloane
E.g.f.: Sum_{k>0} x^k/(k*(1-x^k)). - Vladeta Jovovic, Mar 27 2005
Extensions
More terms from Emeric Deutsch, Jul 24 2005
Edited by N. J. A. Sloane, May 12 2008 at the suggestion of Joerg Arndt
Comments