cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038048 a(n) = (n-1)! * sigma(n).

Original entry on oeis.org

1, 3, 8, 42, 144, 1440, 5760, 75600, 524160, 6531840, 43545600, 1117670400, 6706022400, 149448499200, 2092278988800, 40537905408000, 376610217984000, 13871809695744000, 128047474114560000, 5109094217170944000
Offset: 1

Views

Author

Keywords

Comments

sigma(n) = A000203(n) is the sum of the divisors of n.
Number of labeled regular octopi (or octopuses, cycles of ordered sets all the same size).
Left edge of triangle in A008298.

Examples

			a(6) = 5! * (1 + 2 + 3 + 6) = 1440 = 6! * (1 + 1/2 + 1/3 + 1/6).
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 56 (1.4.67).
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 159, #10, A(n,1).

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} n!/d. - Amarnath Murthy, Jul 24 2005
a(p) = (p+1)*(p-1)! if p is a prime. - Amarnath Murthy, Jul 24 2005
E.g.f.: log(f(x)), where f(x) = o.g.f. for partitions (A000041), Product_{k>=1} 1/(1 - x^k). - N. J. A. Sloane
E.g.f.: Sum_{k>0} x^k/(k*(1-x^k)). - Vladeta Jovovic, Mar 27 2005
a(n) = A000142(n-1)*A000203(n). - Omar E. Pol, Feb 26 2014

Extensions

More terms from Emeric Deutsch, Jul 24 2005
Edited by N. J. A. Sloane, May 12 2008 at the suggestion of Joerg Arndt