A038083 Number of n-node rooted identity trees of height at most 4.
1, 1, 1, 2, 3, 5, 7, 10, 13, 18, 24, 32, 41, 52, 66, 83, 102, 124, 152, 181, 216, 255, 299, 346, 400, 458, 521, 588, 659, 735, 814, 896, 979, 1067, 1151, 1239, 1324, 1407, 1486, 1564, 1635, 1700, 1759, 1809, 1853, 1887, 1912, 1925, 1932, 1925, 1912, 1887, 1853
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..97
- N. J. A. Sloane, Transforms
- Index entries for sequences related to rooted trees
Programs
-
Maple
weigh:= proc(p) proc(n) `if`(n<0,1, coeff(mul((1+x^k)^p(k), k=1..n), x,n)) end end: wsh:= p-> n-> weigh(p)(n-1): a:= wsh(n-> `if`(n>0 and n<12, [1$3,2$5,1$3][n],0)): seq(a(n), n=1..97); # Alois P. Heinz, Sep 10 2008
-
Mathematica
a = Drop[CoefficientList[ Series[x (1 + x) (1 + x^2) (1 + x^3) (1 + x^4), {x, 0, 11}], x], 1]; nn = 97; Drop[ CoefficientList[ Series[x Product[(1 + x^i)^a[[i]], {i, 1, 11}], {x, 0, nn}], x], 1] (* Geoffrey Critzer, Aug 01 2013 *)
Formula
Take Weigh transform of A038082 and shift right.
Comments