cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038110 Numerator of frequency of integers with smallest divisor prime(n).

Original entry on oeis.org

1, 1, 1, 4, 8, 16, 192, 3072, 55296, 110592, 442368, 13271040, 477757440, 19110297600, 802632499200, 1605264998400, 6421059993600, 12842119987200, 770527199232000, 50854795149312000, 3559835660451840000
Offset: 1

Views

Author

Keywords

Comments

Numerator of Product_{k=1..n-1} (1 - 1/prime(k)). - Jonathan Sondow, Jan 31 2014
Equivalently, denominator of Product_{k=1..n-1} prime(k)/(prime(k)-1) (cf. A060753). - N. J. A. Sloane, Apr 17 2015
Sum_{n>=1} a(n)/A038111(n) = 1. - Bob Selcoe, Jan 09 2015
a(n)/A038111(n) = (1/prime(n))*Product_{k=1..n-1} (1 - 1/prime(k)) ~ e^(-c)/ (prime(n)*log(prime(n))), where c=0.577... is the Euler constant. - Vladimir Shevelev, Jan 10 2015

Examples

			a(10) = 110592 = ( 1*2*4*6*10*12*16*18*22 ) / ( 2*3*5*11 ).
		

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1) to a(N)
    Q:= 1: p:= 1:
    for n from 1 to N do
      p:= nextprime(p);
      A[n]:= numer(Q);
      Q:= Q * (1 - 1/p);
    end:
    seq(A[n],n=1..N); # Robert Israel, Jul 14 2014
  • Mathematica
    Numerator@Table[ Product[ 1-1/Prime[ k ], {k, n-1} ]/Prime[ n ], {n, 64} ]
    (* Wouter Meeussen *)
    Numerator@Table[ Product[ 1 - 1/Prime[ k ], {k, n-1}], {n, 64} ]
    (* Jonathan Sondow, Jan 31 2014 *)
    Numerator@
    Table[EulerPhi[Exp[Sum[MangoldtLambda[m], {m, 1, Prime[n] - 1}]]]/
    Exp[Sum[MangoldtLambda[m], {m, 1, Prime[n]}]], {n, 21}]
    (* Fred Daniel Kline, Jul 14 2014 *)
  • PARI
    a(n) = numerator(prod(k=1, n-1, (1 - 1/prime(k)))); \\ Michel Marcus, Aug 05 2019

Formula

a(n) = A005867(n-1) / A058250(n-1), where A058250(m) = gcd(A005867(m), A002110(m)). [Edited by Peter Munn, Jun 29 2025]
a(n)/A060753(n) = Product_{k=1..n-1} (1 - 1/prime(k)) ~ exp(-gamma)/log(n) as n->infinity (Mertens's 3rd theorem). - Jonathan Sondow, Jan 31 2014
a(n+1)/A038111(n+1) = a(n)/A038111(n) * (prime(n)-1)/prime(n+1). - Robert Israel, Jul 14 2014
a(n) = numerator of phi(e^(psi(p_n-1)))/e^(psi(p_n)), where psi(.) is the second Chebyshev function and phi(.) is Euler's totient function. - Fred Daniel Kline, Jul 17 2014