cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038179 Result of second stage of sieve of Eratosthenes (after eliminating multiples of 2 and 3).

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 65, 67, 71, 73, 77, 79, 83, 85, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 121, 125, 127, 131, 133, 137, 139, 143, 145, 149, 151
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

2, 3 and numbers of the form 6m +- 1.
Apart from first two terms, same as A007310.
Terms of this sequence (starting from the third term) are equal to the result of the expression sqrt(4!*(k+1) + 1) - but only when this expression yields integral values (that is when the parameter k takes values, which are terms of A144065). - Alexander R. Povolotsky, Sep 09 2008
For every integer n>2, n is in this sequence iff Product_{k=2..oo} 1/(1 - 1/k^n) = Product_{k=1..n} Gamma( 2 - (-1)^(k*(1 + 1/n)) ). - Federico Provvedi, Nov 07 2024

References

  • Fred S. Roberts, Applied Combinatorics, Prentice-Hall, 1984, p. 256.

Crossrefs

Programs

  • Mathematica
    max = 200; Complement[Range[2, max], 2Range[2, Ceiling[max/2]], 6Range[2, Ceiling[max/6]] + 3] (* Alonso del Arte, May 16 2014 *)
    Prepend[Table[3*n - Mod[ Mod[n, 2] + 1, n], {n, 1, 999}], 2] (* Mikk Heidemaa, Nov 02 2017 *)

Formula

O.g.f.: x*(2 + x + x^3 + 2x^4)/((1+x)*(1-x)^2). - R. J. Mathar, May 23 2008
a(n) = (1/9)*(4*n^3 + 3*n^2 + 1 - Kronecker(-3,n+1)). - Ralf Stephan, Jun 01 2014
From Mikk Heidemaa, Oct 28 2017: (Start)
a(n) = floor((41/21 - (3 mod n))^(-3*n+5)) + 3*n - 4 (n > 0).
a(n+1) = 3*n - ((n mod 2)+1) mod n (n > 0). (End)
a(n+2) = 2*floor((3*n+1)/2) + 1 for n>=1; see (17) in Diab link. - Michel Marcus, Dec 14 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = (7-sqrt(3)*Pi)/6. - Amiram Eldar, Sep 22 2022

Extensions

Name edited by Michel Marcus, Dec 14 2020