A038183 One-dimensional cellular automaton 'sigma-minus' (Rule 90): 000,001,010,011,100,101,110,111 -> 0,1,0,1,1,0,1,0.
1, 5, 17, 85, 257, 1285, 4369, 21845, 65537, 327685, 1114129, 5570645, 16843009, 84215045, 286331153, 1431655765, 4294967297, 21474836485, 73014444049, 365072220245, 1103806595329, 5519032976645, 18764712120593, 93823560602965, 281479271743489, 1407396358717445
Offset: 0
Keywords
Examples
Successive states are: 1 101 10001 1010101 100000001 10100000101 1000100010001 101010101010101 10000000000000001 ... which when converted from binary to decimal give the sequence. - _N. J. A. Sloane_, Jul 21 2014
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- A. J. Macfarlane, Generating functions for integer sequences defined by the evolution of cellular automata..., Fig.9
- Eric Weisstein's World of Mathematics, Rule 90
- Wikipedia, Rule 90
- Stephen Wolfram, Geometry of Binomial Coefficients, Amer. Math. Monthly, Volume 91, Number 9, November 1984, pages 566-571.
- S. Wolfram, O. Martin, and A.M. Odlyzko, Algebraic Properties of Cellular Automata (1984), Communications in Mathematical Physics, 93 (March 1984) 219-258.
- Index entries for sequences related to cellular automata
Crossrefs
Programs
-
Maple
bit_n := (x,n) -> `mod`(floor(x/(2^n)),2); # A recursive, cellular automaton rule version: sigmaminus := proc(n) option remember: if (0 = n) then (1) else sum('((bit_n(sigmaminus(n-1),i)+bit_n(sigmaminus(n-1),i-2)) mod 2)*(2^i)', 'i'=0..(2*n)) fi: end:
-
Mathematica
r = 24; c = CellularAutomaton[90, {{1}, 0}, r - 1]; Table[FromDigits[c[[k, r - k + 1 ;; r + k - 1]], 2], {k, r}] (* Arkadiusz Wesolowski, Jun 09 2013 *) a[ n_] := Sum[ 4^(n - k) Mod[Binomial[2 n, 2 k], 2], {k, 0, n}]; (* Michael Somos, Jun 30 2018 *) a[ n_] := If[ n < 0, 0, Product[ BitGet[n, k] (2^(2^(k + 1))) + 1, {k, 0, n}]]; (* Michael Somos, Jun 30 2018 *)
-
PARI
vector(100,i,a=if(i>1,bitxor(a<<2,a),1)) \\ M. F. Hasler, Oct 09 2017
-
PARI
{a(n) = sum(k=0, n, binomial(2*n, 2*k)%2 * 4^(n-k))}; /* Michael Somos, Jun 30 2018 */
-
Python
a=1 for n in range(55): print(a, end=",") a ^= a*4 # Alex Ratushnyak, May 04 2012
-
Python
def A038183(n): return sum((bool(~(m:=n<<1)&m-k)^1)<
Chai Wah Wu, May 02 2023
Formula
a(n) = Product_{i>=0} bit_n(n, i)*(2^(2^(i+1)))+1: A direct algebraic formula!
a(n) = Sum_{k=0..n} (C(2*n, 2*k) mod 2)*4^(n-k). - Paul Barry, Jan 03 2005
a(2*n+1) = 5*a(2n); a(n+1) = a(n) XOR 4*a(n) where XOR is binary exclusive OR operator. - Philippe Deléham, Jun 18 2005
a(n) = A001317(2n). - Alex Ratushnyak, May 04 2012
Comments