cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038208 Triangle whose (i,j)-th entry is binomial(i,j)*2^i.

Original entry on oeis.org

1, 2, 2, 4, 8, 4, 8, 24, 24, 8, 16, 64, 96, 64, 16, 32, 160, 320, 320, 160, 32, 64, 384, 960, 1280, 960, 384, 64, 128, 896, 2688, 4480, 4480, 2688, 896, 128, 256, 2048, 7168, 14336, 17920, 14336, 7168, 2048, 256, 512, 4608, 18432, 43008, 64512, 64512, 43008, 18432, 4608, 512
Offset: 0

Views

Author

Keywords

Comments

Triangle obtained from expansion of (2 + 2*x)^n.

Examples

			    1;
    2,    2;
    4,    8,    4;
    8,   24,   24,     8;
   16,   64,   96,    64,    16;
   32,  160,  320,   320,   160,   32;
   64,  384,  960,  1280,   960,   384,   64;
  128,  896, 2688,  4480,  4480,  2688,  896,  128;
  256, 2048, 7168, 14336, 17920, 14336, 7168, 2048, 256;
		

Crossrefs

Cf. A000079, A000302 (row sums), A002605 (diagonal sums), A027306.

Programs

  • Magma
    [Binomial(n,k)*2^n: k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 17 2018
    
  • Mathematica
    nn=8;Map[Select[#,#>0&]&,Transpose[Table[Range[0,nn]!CoefficientList[Series[2^k x^k/k! Exp[2x],{x,0,nn}],x],{k,0,nn}]]]//Grid (* Geoffrey Critzer, Feb 13 2014 *)
    Flatten[Table[Binomial[i,j]2^i,{i,0,10},{j,0,i}]] (* Harvey P. Dale, May 28 2015 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(binomial(n,k)*2^n, ", "))) \\ G. C. Greubel, Oct 17 2018
    
  • Sage
    flatten([[binomial(n,k)*2^n for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 21 2022

Formula

E.g.f. for column k: 2^k*x^k/k!*exp(2*x). - Geoffrey Critzer, Feb 13 2014
From G. C. Greubel, Mar 21 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 0) = A000079(n).
Sum_{k=0..n} T(n, k) = A000302(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A002605(n+1).
Sum_{k=0..floor(n/2)} T(n, k) = 2^n*A027306(n). (End)