cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038231 Triangle whose (i,j)-th entry is binomial(i,j)*4^(i-j).

Original entry on oeis.org

1, 4, 1, 16, 8, 1, 64, 48, 12, 1, 256, 256, 96, 16, 1, 1024, 1280, 640, 160, 20, 1, 4096, 6144, 3840, 1280, 240, 24, 1, 16384, 28672, 21504, 8960, 2240, 336, 28, 1, 65536, 131072, 114688, 57344, 17920, 3584, 448, 32, 1, 262144, 589824, 589824, 344064, 129024, 32256, 5376, 576, 36, 1
Offset: 0

Views

Author

Keywords

Comments

Triangle of coefficients in expansion of (4+x)^n. - N-E. Fahssi, Apr 13 2008

Examples

			Triangle begins:
      1;
      4,      1;
     16,      8,      1;
     64,     48,     12,     1;
    256,    256,     96,    16,     1;
   1024,   1280,    640,   160,    20,    1;
   4096,   6144,   3840,  1280,   240,   24,   1;
  16384,  28672,  21504,  8960,  2240,  336,  28,  1;
  65536, 131072, 114688, 57344, 17920, 3584, 448, 32, 1;
		

Crossrefs

Cf. A000302, A013611 (row-reversed), A000351 (row sums).

Programs

  • GAP
    Flat(List([0..10], n-> List([0..n], k-> 4^(n-k)*Binomial(n, k) ))); # G. C. Greubel, Jul 20 2019
  • Magma
    [4^(n-k)*Binomial(n, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jul 20 2019
    
  • Maple
    for i from 0 to 10 do seq(binomial(i, j)*4^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Dec 21 2007
    # Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left.
    PMatrix(10, n -> 4^(n-1)); # Peter Luschny, Oct 09 2022
  • Mathematica
    Table[4^(n-k)*Binomial[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 20 2019 *)
  • PARI
    T(n,k) = 4^(n-k)*binomial(n, k); \\ G. C. Greubel, Jul 20 2019
    
  • Sage
    [[4^(n-k)*binomial(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jul 20 2019
    

Formula

G.f. for j-th column is (x^j)/(1-4*x)^(j+1).
Convolution triangle of A000302 (powers of 4).
Sum_{k=0..n} T(n,k)*(-1)^k*A000108(k) = A001700(n). - Philippe Deléham, Nov 27 2009
See A038207 and A027465 and replace 2 and 3 in analogous formulas with 4. - Tom Copeland, Oct 26 2012