A038243 Triangle whose (i,j)-th entry is 5^(i-j)*binomial(i,j).
1, 5, 1, 25, 10, 1, 125, 75, 15, 1, 625, 500, 150, 20, 1, 3125, 3125, 1250, 250, 25, 1, 15625, 18750, 9375, 2500, 375, 30, 1, 78125, 109375, 65625, 21875, 4375, 525, 35, 1, 390625, 625000, 437500, 175000, 43750, 7000, 700, 40, 1, 1953125, 3515625, 2812500, 1312500, 393750, 78750, 10500, 900, 45, 1
Offset: 0
Examples
Triangle begins as: 1; 5, 1; 25, 10, 1; 125, 75, 15, 1; 625, 500, 150, 20, 1; 3125, 3125, 1250, 250, 25, 1; 15625, 18750, 9375, 2500, 375, 30, 1; 78125, 109375, 65625, 21875, 4375, 525, 35, 1; 390625, 625000, 437500, 175000, 43750, 7000, 700, 40, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- B. N. Cyvin, J. Brunvoll, and S. J. Cyvin, Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), 109-121.
Crossrefs
Programs
-
Magma
[5^(n-k)*Binomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 12 2021
-
Maple
for i from 0 to 8 do seq(binomial(i, j)*5^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Dec 21 2007 # Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left. PMatrix(10, n -> 5^(n-1)); # Peter Luschny, Oct 09 2022
-
Mathematica
With[{q=5}, Table[q^(n-k)*Binomial[n,k], {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, May 12 2021 *)
-
Sage
flatten([[5^(n-k)*binomial(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 12 2021
Formula
See A038207 and A027465 and replace 2 and 3 in analogous formulas with 5. - Tom Copeland, Oct 26 2012
Comments