A038279 Triangle whose (i,j)-th entry is binomial(i,j)*8^(i-j)*1^j.
1, 8, 1, 64, 16, 1, 512, 192, 24, 1, 4096, 2048, 384, 32, 1, 32768, 20480, 5120, 640, 40, 1, 262144, 196608, 61440, 10240, 960, 48, 1, 2097152, 1835008, 688128, 143360, 17920, 1344, 56, 1, 16777216, 16777216, 7340032, 1835008, 286720
Offset: 0
Examples
1 8, 1 64, 16, 1 512, 192, 24, 1 4096, 2048, 384, 32, 1 32768, 20480, 5120, 640, 40, 1 262144, 196608, 61440, 10240, 960, 48, 1 2097152, 1835008, 688128, 143360, 17920, 1344, 56, 1 16777216, 16777216, 7340032, 1835008, 286720, 28672, 1792, 64, 1
References
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 44, 48
Links
- Muniru A Asiru, Rows n=0..50 of triangle, flattened
- B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.
Crossrefs
Cf. A317028
Programs
-
GAP
Flat(List([0..8],i->List([0..i],j->Binomial(i,j)*8^(i-j)*1^j))); # Muniru A Asiru, Jul 21 2018
-
Maple
for i from 0 to 8 do seq(binomial(i, j)*8^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Dec 21 2007
-
Mathematica
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 8 t[n - 1, k] + t[n - 1, k - 1]]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Zagros Lalo, Jul 21 2018 *) Table[CoefficientList[ Expand[(8 + x)^n], x], {n, 0, 8}] // Flatten (* Zagros Lalo, Jul 22 2018 *) Table[CoefficientList[Binomial[i, j] * 8^(i - j) * 1^j, x], {i, 0, 8}, {j,0, i}] // Flatten (* Zagros Lalo, Jul 23 2018 *)
Formula
T(0,0) = 1; T(n,k) = 8 T(n-1,k) + T(n-1,k-1) for k = 0..n; T(n,k)=0 for n or k < 0. - Zagros Lalo, Jul 21 2018
Comments