cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038344 Numbers k such that phi(k) + sigma(k) is a prime.

Original entry on oeis.org

1, 8, 9, 32, 36, 50, 100, 225, 242, 484, 512, 578, 729, 800, 900, 1089, 1156, 1250, 1936, 2025, 2048, 2304, 2312, 2601, 2916, 3025, 3872, 4418, 6400, 7225, 7744, 8192, 8464, 8836, 9216, 10000, 12800, 14400, 20000, 20736, 21609, 26896, 27556, 31684, 32768, 33856, 34322
Offset: 1

Views

Author

Keywords

Comments

Indices k such that A065387(k) is a prime number. - R. J. Mathar, Aug 26 2009
All terms are squares or twice squares (A028982). - Donovan Johnson, Sep 27 2013

Examples

			a(2) = 8 because phi(8) + sigma(8) = 19.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..40000] | IsPrime(EulerPhi(n)+DivisorSigma(1,n))]; // Vincenzo Librandi, Jul 22 2016
  • Mathematica
    Select[Range[0, 40000], PrimeQ[DivisorSigma[1, #] + EulerPhi[#]] &] (* Vincenzo Librandi, Jul 22 2016 *)
  • PARI
    isok(n) = isprime(eulerphi(n) + sigma(n)); \\ Michel Marcus, Sep 27 2013
    
  • PARI
    v=vector(1000); c=0; for(j=1, 12105, m=j^2; if(isprime(eulerphi(m)+sigma(m)), c++; v[c]=m)); for(j=1, 8559, m=2*j^2; if(isprime(eulerphi(m)+sigma(m)), c++; v[c]=m)); v=vecsort(v); for(n=1, 1000, write("b038344.txt", n " " v[n])) \\ Donovan Johnson, Sep 27 2013
    

Formula

{k: A000203(k) + A000010(k) in A000040}. - R. J. Mathar, Aug 26 2009

Extensions

More terms from Olivier Gérard