A038348 Expansion of (1/(1-x^2))*Product_{m>=0} 1/(1-x^(2m+1)).
1, 1, 2, 3, 4, 6, 8, 11, 14, 19, 24, 31, 39, 49, 61, 76, 93, 114, 139, 168, 203, 244, 292, 348, 414, 490, 579, 682, 801, 938, 1097, 1278, 1487, 1726, 1999, 2311, 2667, 3071, 3531, 4053, 4644, 5313, 6070, 6923, 7886, 8971, 10190, 11561
Offset: 0
Keywords
Examples
From _Gus Wiseman_, Sep 23 2019: (Start) Also the number of integer partitions of n that are strict except possibly for any number of 1's. For example, the a(1) = 1 through a(7) = 11 partitions are: (1) (2) (3) (4) (5) (6) (7) (11) (21) (31) (32) (42) (43) (111) (211) (41) (51) (52) (1111) (311) (321) (61) (2111) (411) (421) (11111) (3111) (511) (21111) (3211) (111111) (4111) (31111) (211111) (1111111) (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Cristina Ballantine and Mircea Merca, On identities of Watson type, Ars Mathematica Contemporanea (2019) Vol. 17, 277-290.
- Kevin Beanland and Hung Viet Chu, On Schreier-type Sets, Partitions, and Compositions, arXiv:2311.01926 [math.CO], 2023.
- P. Flajolet and B. Salvy, Euler sums and contour integral representations, Experimental Mathematics, Vol. 7 Issue 1 (1998).
- J. Fulman, Random matrix theory over finite fields, Bull. Amer. Math. Soc. (N.S.), 39 (2002), no. 1, 51--85. MR1864086 (2002i:60012). See top of page 70, Eq. 2, with k=1. - _N. J. A. Sloane_, Aug 31 2014
- Rebekah Ann Gilbert, A Fine Rediscovery, 2014.
- Amrik Singh Nimbran and Paul Levrie, Series of the form Sum {a_n*binomial(2n, n)}, Math. Student (2023) Vol. 92, Nos. 3-4, 155-173. See pp. 10, 16.
Crossrefs
Programs
-
Maple
f:=1/(1-x^2)/product(1-x^(2*j-1),j=1..32): fser:=series(f,x=0,62): seq(coeff(fser,x,n),n=0..58); # Emeric Deutsch, Feb 22 2006
-
Mathematica
mmax = 47; CoefficientList[ Series[ (1/(1-x^2))*Product[1/(1-x^(2m+1)), {m, 0, mmax}], {x, 0, mmax}], x] (* Jean-François Alcover, Jun 21 2011 *)
-
SageMath
# uses[EulerTransform from A166861] def g(n): return n % 2 if n > 2 else 1 a = EulerTransform(g) print([a(n) for n in range(48)]) # Peter Luschny, Dec 04 2020
Formula
a(n) = A000009(n) + a(n-2). - Vladeta Jovovic, Feb 10 2004
G.f.: 1/((1-x^2)*Product_{j>=1} (1 - x^(2*j-1))). - Emeric Deutsch, Feb 22 2006
From Vaclav Kotesovec, Aug 16 2015: (Start)
a(n) ~ (1/2) * A036469(n).
a(n) ~ 3^(1/4) * exp(Pi*sqrt(n/3)) / (4*Pi*n^(1/4)). (End)
Euler transform of the sequence [1, 1, period(1, 0)] (A266591). - Georg Fischer, Dec 04 2020
Comments