A038369 Numbers k such that k = (product of digits of k) * (sum of digits of k).
0, 1, 135, 144
Offset: 1
Examples
144 belongs to the sequence because 1*4*4=16, 1+4+4=9 -> 16*9=144
Links
- Alan Beardon, S.P numbers, The Mathematical Gazette, 83(496), 25-32 (1999).
- Alan Beardon, Sums and Products of Digits and SP Numbers, NRICH, University of Cambridge, 1998.
- Alan Beardon, Recent Developments on S.P. Numbers, NRICH, University of Cambridge, 1998-2011.
- E. Bussmann, S.P numbers in bases other than 10, The Mathematical Gazette, 85(503), 245-248 (2001).
- K. McLean, There are only three S.P numbers!, The Mathematical Gazette, 83(496), 32-38 (1999).
- S. Parameswaran, Numbers and their digits - a structural pattern, Note 81.24, The Mathematical Gazette, 81(491), 263-263 (1997).
- Eric Weisstein's World of Mathematics, Sum-Product Number.
- Eric Weisstein's World of Mathematics, Digit.
Programs
-
Mathematica
pdsdQ[n_]:=Module[{idn=IntegerDigits[n]},(Total[idn]Times@@idn)==n]; Select[Range[0,150],pdsdQ] (* Harvey P. Dale, Apr 23 2011 *)
-
PARI
is(n)=my(d=digits(n)); factorback(d)*vecsum(d)==n \\ Charles R Greathouse IV, Feb 06 2017
Comments