cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038376 a(n) = (n-3)*A006918(n-2)/2 for n >= 2, with a(0) = a(1) = 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 5, 12, 28, 50, 90, 140, 220, 315, 455, 616, 840, 1092, 1428, 1800, 2280, 2805, 3465, 4180, 5060, 6006, 7150, 8372, 9828, 11375, 13195, 15120, 17360, 19720, 22440, 25296, 28560, 31977, 35853, 39900, 44460, 49210, 54530, 60060, 66220, 72611
Offset: 0

Views

Author

Keywords

Comments

a(n) is the maximum number of 4-circuits in an n-tournament. - Franck Maminirina Ramaharo, Aug 06 2025

References

  • K. B. Reid and L. W. Beineke "Tournaments", pp. 169-204 in L. W. Beineke and R. J. Wilson, editors, Selected Topics in Graph Theory, Academic Press, NY, 1978, p. 186 Theorem 6.11.

Crossrefs

Cf. A006918.

Programs

  • Mathematica
    LinearRecurrence[{2, 2, -6, 0, 6, -2, -2, 1}, {0, 0, 0, 0, 1, 5, 12, 28}, 100]
    (* or *)
    A038376[n_] := n*(n - 3)*(2*n^2 - 3*(-1)^n - 5)/96;
    Array[A038376, 100, 0] (* Paolo Xausa, Sep 16 2024 *)
  • PARI
    concat(vector(4), Vec(x^4*(1+3*x) / ((1-x)^5 * (1+x)^3) + O(x^100))) \\ Colin Barker, Nov 19 2016

Formula

From Colin Barker, Nov 19 2016: (Start)
a(n) = (n^4-3*n^3-4*n^2+12*n)/48 for n even.
a(n) = (n^4-3*n^3-n^2+3*n)/48 for n odd.
a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8) for n>7.
G.f.: x^4*(1+3*x) / ((1-x)^5 * (1+x)^3). (End)
a(n) = n*(n - 3)*(2*n^2 - 3*(-1)^n - 5)/96. - Paolo Xausa, Sep 17 2024 (derived from Bruno Berselli formula in A006918)

Extensions

Name corrected by Paolo Xausa, Sep 16 2024