cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A386875 a(n) is the maximum number of strong sub-tournaments in an n-tournament.

Original entry on oeis.org

0, 0, 0, 1, 3, 11, 27, 71, 159, 367, 783, 1695, 3519, 7359, 15039, 30847, 62463, 126719, 255231, 514559, 1033215, 2075647, 4160511, 8341503, 16703487, 33452031, 66949119, 133996543, 268091391, 536395775, 1073004543, 2146467839, 4293394431, 8587771903
Offset: 0

Views

Author

Keywords

References

  • K. B. Reid and L. W. Beineke, "Tournaments", pp. 169-204 in L. W. Beineke and R. J. Wilson, editors, Selected Topics in Graph Theory, Academic Press, NY, 1978, p. 183 Corollary 6.2.

Crossrefs

Cf. A006918 (the maximum number of 3-cycles in an (n+2)-tournament).
Cf. A038376.

Programs

  • Mathematica
    Table[If[Mod[n, 2] == 1, 2^n  - n*2^((n - 1)/2) - 1, 2^n - 3*n*2^((n - 4)/2) - 1], {n, 0, 20}]
  • Maxima
    a(n) := if mod(n, 2) = 1 then 2^n - n*2^((n - 1)/2) - 1 else 2^n - 3*n*2^((n - 4)/2) - 1$
    makelist(a(n), n, 1, 20);

Formula

a(n) = 2^n - n*2^((n - 1)/2) - 1 if n is odd, and a(n) = 2^n - 3*n*2^((n - 4)/2) - 1 if n is even.
G.f.: x^3/((2*x-1)*(x-1)*(2*x^2-1)^2). - Alois P. Heinz, Aug 06 2025
E.g.f.: cosh(2*x) - cosh(x) - x*cosh(sqrt(2)*x) - sinh(x) + sinh(2*x) - 3*x*sinh(sqrt(2)*x)/(2*sqrt(2)). - Stefano Spezia, Aug 11 2025
a(2n+1) = A286778(n)/2. - R. J. Mathar, Aug 26 2025
Showing 1-1 of 1 results.