cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038391 Expansion of (x^3+2*x+1) / ((x-1)^4*(x^2+x+1)^2).

Original entry on oeis.org

1, 4, 7, 13, 23, 33, 48, 69, 90, 118, 154, 190, 235, 290, 345, 411, 489, 567, 658, 763, 868, 988, 1124, 1260, 1413, 1584, 1755, 1945, 2155, 2365, 2596, 2849, 3102, 3378, 3678, 3978, 4303, 4654, 5005, 5383, 5789, 6195, 6630, 7095, 7560, 8056, 8584, 9112, 9673
Offset: 0

Views

Author

Keywords

Comments

Old Name was: Bisection of A028289.

References

  • B. N. Cyvin et al., Enumeration of conjugated hydrocarbons..., Structural Chem., 6 (1995), 85-88, equation (8).

Crossrefs

Cf. A028289.

Programs

  • Mathematica
    CoefficientList[Series[(x^3 + 2 x + 1)/((x - 1)^4 (x^2 + x + 1)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 22 2013 *)
    LinearRecurrence[{2,-1,2,-4,2,-1,2,-1},{1,4,7,13,23,33,48,69},50] (* Harvey P. Dale, Sep 22 2015 *)

Formula

G.f.: (x^3+2*x+1) / ((x-1)^4*(x^2+x+1)^2). - Colin Barker, Aug 30 2013
From Wesley Ivan Hurt, May 07 2016: (Start)
a(n) = 2*a(n-1)-a(n-2)+2*a(n-3)-4*a(n-4)+2*a(n-5)-a(n-6)+2*a(n-7)-a(n-8).
a(n) = Sum_{i=1..n+1} (1+floor((n+i+1)/3)) * (1+floor((n-i+1)/3)). (End)

Extensions

More terms from Colin Barker, Aug 30 2013
Name changed by Wesley Ivan Hurt, May 07 2016