A038447 Sums of 5 distinct powers of 10.
11111, 101111, 110111, 111011, 111101, 111110, 1001111, 1010111, 1011011, 1011101, 1011110, 1100111, 1101011, 1101101, 1101110, 1110011, 1110101, 1110110, 1111001, 1111010, 1111100, 10001111, 10010111, 10011011, 10011101
Offset: 1
Examples
From _Joshua S.M. Weiner_, Oct 18 2012: (Start) a(1) = 11111 a(2) = 101111 (begins 6C5 nodes) a(3) = 110111 a(4) = 111011 a(5) = 111101 a(6) = 111110 a(7) = 1001111 (begins 7C5 nodes) (End)
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Siteswap
Programs
-
Haskell
import Data.Set (fromList, deleteFindMin, union) a038447 n = a038447_list !! (n-1) a038447_list = f $ fromList [11111] where f s = m : f (union s' $ fromList $ g [] $ show m) where (m, s') = deleteFindMin s g _ [] = [] g us ('0':vs) = g (us ++ ['0']) vs g us ('1':vs) = (read (us ++ "10" ++ vs)) : g (us ++ ['1']) vs -- Reinhard Zumkeller, Jan 06 2015
-
Mathematica
t = Select[Range[200], Total[IntegerDigits[#, 2]] == 5 &]; FromDigits /@ IntegerDigits[t, 2] (* T. D. Noe, Oct 19 2012 *)
-
Python
from itertools import islice def A038447_gen(): # generator of terms yield int(bin(n:=31)[2:]) while True: yield int(bin((n:=n^((a:=-n&n+1)|(a>>1)) if n&1 else ((n&~(b:=n+(a:=n&-n)))>>a.bit_length())^b))[2:]) A038447_list = list(islice(A038447_gen(),20)) # Chai Wah Wu, Mar 11 2025
Comments