cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Joshua S.M. Weiner

Joshua S.M. Weiner's wiki page.

Joshua S.M. Weiner has authored 9 sequences.

A228093 Primes congruent to 5 (mod 504).

Original entry on oeis.org

5, 509, 1013, 3533, 6053, 8069, 8573, 10589, 11093, 11597, 12101, 13109, 13613, 14621, 15629, 18149, 19157, 19661, 23189, 24197, 26717, 28229, 29741, 31253, 32261, 33773, 34781, 36293, 39317, 39821, 40829, 41333, 43853, 44357, 45869, 46877, 47381, 50909, 51413
Offset: 1

Author

Joshua S.M. Weiner, Aug 09 2013

Keywords

Programs

  • Magma
    [p: p in PrimesUpTo(105500) | p mod 504 eq 5 ];
  • Maple
    select(isprime, [5+504*i$i=0..200])[];  # Alois P. Heinz, Jan 01 2022
  • Mathematica
    Select[Prime@Range[6000], MemberQ[{5}, Mod[#, 504]] &] (* Vincenzo Librandi, Apr 05 2015 *)

Extensions

Missing a(30)=39821 inserted by Georg Fischer, Jan 01 2022

A218037 Decimal numbers with exactly two consecutive zeros.

Original entry on oeis.org

100, 200, 300, 400, 500, 600, 700, 800, 900, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800
Offset: 1

Author

Joshua S.M. Weiner, Oct 19 2012

Keywords

Comments

The various "beatmap" sequences used in music, dance choreography and even juggling has been standardized with an often employed "00" subsequence. This "00" represents two empty beats, like a musical rest of 2 beats in a measure.

Crossrefs

Cf. A043490 (superset).

A218043 Base 3 numbers that have digits that sum to 3.

Original entry on oeis.org

12, 21, 102, 111, 120, 201, 210, 1002, 1011, 1020, 1101, 1110, 1200, 2001, 2010, 2100, 10002, 10011, 10020, 10101, 10110, 10200, 11001, 11010, 11100, 12000, 20001, 20010, 20100, 21000, 100002, 100011, 100020, 100101, 100110, 100200, 101001, 101010, 101100
Offset: 1

Author

Joshua S.M. Weiner, Oct 19 2012

Keywords

Comments

It is a representation of the "energy states" of "multiplex pair" notation of 3 quantum of objects in a juggling pattern.
0 = an empty site, or empty hand. 1 = one object resides in the site. 2 = two objects reside in the site.

Programs

  • Mathematica
    t = Select[Range[500], Total[IntegerDigits[#, 3]] == 3 &]; FromDigits /@ IntegerDigits[t, 3] (* T. D. Noe, Oct 19 2012 *)

A217863 a(n) = phi(lcm(1,2,3,...,n)), where phi is Euler's totient function.

Original entry on oeis.org

1, 1, 2, 4, 16, 16, 96, 192, 576, 576, 5760, 5760, 69120, 69120, 69120, 138240, 2211840, 2211840, 39813120, 39813120, 39813120, 39813120, 875888640, 875888640, 4379443200, 4379443200, 13138329600, 13138329600, 367873228800, 367873228800, 11036196864000
Offset: 1

Author

Joshua S.M. Weiner, Oct 13 2012

Keywords

Comments

This is a composition f(g(x)). g(x) = lcm(1...x) and f(x) = phi(x), Euler's totient function. The sequence generated is the number of prime congruence classes (prime spokes) for wheel factorization in mod g(x).
First column of A096180. - Eric Desbiaux, Apr 23 2013

Crossrefs

Cf. A000010 (Euler phi), A003418 (LCM), A072211, A173557.

Programs

  • Haskell
    a217863 = a000010 . a003418  -- Reinhard Zumkeller, Nov 24 2012
    
  • Maple
    with(numtheory): a:=n->phi(lcm(seq(m,m=1..n))): seq(a(n),n=1..40); # Muniru A Asiru, Feb 20 2019
  • Mathematica
    EulerPhi[Table[LCM @@ Range[n], {n, 35}]] (* T. D. Noe, Oct 16 2012 *)
  • PARI
    a(n) = eulerphi(lcm(vector(n, k, k))); \\ Michel Marcus, Aug 25 2015

Formula

a(n) = A000010(A003418(n)). - Omar E. Pol, Nov 25 2012
From Peter Bala, Feb 19 2019: (Start)
a(n) = Product_{k = 1..n} A072211(k).
With p denoting a prime, a(n) = ( Product_{p <= n} (p - 1) ) * ( Product_{p^2 <= n} p ) * ( Product_{p^3 <= n} p ) * ... . For example, a(16) = ((2-1)*(3-1)*(5-1)*(7-1)*(11-1)*(13-1)) * (2*3) * 2 * 2 = 138240. (End)

A217862 Primes p of the form p = 1 + 840*k for some k.

Original entry on oeis.org

2521, 3361, 4201, 5881, 7561, 9241, 12601, 13441, 14281, 15121, 18481, 20161, 21001, 21841, 26041, 26881, 29401, 30241, 31081, 33601, 35281, 41161, 42841, 45361, 47041, 47881, 51241, 52081, 54601, 55441, 63841, 65521, 66361, 68041, 68881, 74761, 76441, 78121
Offset: 1

Author

Joshua S.M. Weiner, Oct 13 2012

Keywords

Comments

This is a prime sequence based on the wheel factorization of 840. There are 192 congruence classes that form prime wheel spokes mod 840.

Programs

  • Mathematica
    Select[Prime[Range[5000]], Mod[#, 840] == 1 &]
    Select[840*Range[0,100]+1,PrimeQ] (* Harvey P. Dale, Mar 03 2018 *)

A217656 Primes p such that p = 361 + 420*k for some k.

Original entry on oeis.org

1201, 1621, 3301, 4561, 5821, 6661, 8761, 9181, 9601, 10861, 11701, 12541, 13381, 14221, 15061, 15901, 16741, 17581, 19681, 20101, 20521, 22621, 23041, 25561, 25981, 26821, 27241, 28081, 28921, 29761, 30181, 33961, 34381, 35221, 36061, 36901, 37321
Offset: 1

Author

Joshua S.M. Weiner, Oct 09 2012

Keywords

Comments

This is one prime congruence class of a wheel factorization of mod 420. The wheel has 96 spokes.

Programs

  • Mathematica
    Select[Prime[Range[50000]], Mod[#, 420]== 361 &]

A217692 Primes p such that p = 1 + 27720*k for some k.

Original entry on oeis.org

55441, 110881, 332641, 388081, 415801, 471241, 498961, 526681, 748441, 859321, 970201, 1025641, 1053361, 1108801, 1247401, 1275121, 1302841, 1358281, 1469161, 1580041, 1912681, 1940401, 1995841, 2051281, 2189881, 2273041, 2300761, 2383921, 2411641, 2855161
Offset: 1

Author

Joshua S.M. Weiner, Oct 11 2012

Keywords

Comments

This is a congruence class of a prime wheel factorization mod 27720. Note that 27720 is the LCM of {1,...,11}.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(3*10^6) | IsOne(p mod 27720)]; // Bruno Berselli, Oct 12 2012
  • Mathematica
    Select[Table[1 + 27720*k, {k, 200}], PrimeQ] (* T. D. Noe, Oct 11 2012 *)

A217588 Primes of the form 2520k + 1 for some k.

Original entry on oeis.org

2521, 7561, 12601, 15121, 20161, 30241, 35281, 42841, 45361, 47881, 55441, 65521, 68041, 78121, 93241, 100801, 110881, 126001, 128521, 131041, 141121, 146161, 151201, 156241, 158761, 161281, 176401, 178921, 186481, 196561, 199081, 206641, 211681, 229321
Offset: 1

Author

Joshua S.M. Weiner, Oct 07 2012

Keywords

Crossrefs

Subsequence of A217587.

Programs

  • Magma
    [p: p in PrimesInInterval(2521,260000) | IsOne(p mod 2520)]; // Bruno Berselli, Oct 10 2012
  • Mathematica
    Select[1 + 2520*Range[100], PrimeQ] (* T. D. Noe, Oct 10 2012 *)

A217587 Primes p of the form 420k + 1 for some k.

Original entry on oeis.org

421, 2521, 3361, 4201, 4621, 5881, 6301, 7561, 8821, 9241, 9661, 10501, 12601, 13441, 14281, 15121, 15541, 16381, 18061, 18481, 20161, 21001, 21841, 24781, 25621, 26041, 26881, 29401, 30241, 30661, 31081, 32341, 33181, 33601, 35281, 36541, 39901, 41161
Offset: 1

Author

Joshua S.M. Weiner, Oct 07 2012

Keywords

Crossrefs

Subsequence of A073102.

Programs

  • Mathematica
    Select[Prime[Range[5000]], Mod[#, 420] == 1 &] (* T. D. Noe, Oct 08 2012 *)
    Select[420*Range[100]+1,PrimeQ] (* Harvey P. Dale, Jun 06 2013 *)