cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A217588 Primes of the form 2520k + 1 for some k.

Original entry on oeis.org

2521, 7561, 12601, 15121, 20161, 30241, 35281, 42841, 45361, 47881, 55441, 65521, 68041, 78121, 93241, 100801, 110881, 126001, 128521, 131041, 141121, 146161, 151201, 156241, 158761, 161281, 176401, 178921, 186481, 196561, 199081, 206641, 211681, 229321
Offset: 1

Views

Author

Joshua S.M. Weiner, Oct 07 2012

Keywords

Crossrefs

Subsequence of A217587.

Programs

  • Magma
    [p: p in PrimesInInterval(2521,260000) | IsOne(p mod 2520)]; // Bruno Berselli, Oct 10 2012
  • Mathematica
    Select[1 + 2520*Range[100], PrimeQ] (* T. D. Noe, Oct 10 2012 *)

A217692 Primes p such that p = 1 + 27720*k for some k.

Original entry on oeis.org

55441, 110881, 332641, 388081, 415801, 471241, 498961, 526681, 748441, 859321, 970201, 1025641, 1053361, 1108801, 1247401, 1275121, 1302841, 1358281, 1469161, 1580041, 1912681, 1940401, 1995841, 2051281, 2189881, 2273041, 2300761, 2383921, 2411641, 2855161
Offset: 1

Views

Author

Joshua S.M. Weiner, Oct 11 2012

Keywords

Comments

This is a congruence class of a prime wheel factorization mod 27720. Note that 27720 is the LCM of {1,...,11}.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(3*10^6) | IsOne(p mod 27720)]; // Bruno Berselli, Oct 12 2012
  • Mathematica
    Select[Table[1 + 27720*k, {k, 200}], PrimeQ] (* T. D. Noe, Oct 11 2012 *)
Showing 1-2 of 2 results.