A038455 Triangle read by rows: T(n, k) = [x^k] x*Pochhammer(n + x, n)/(n + x).
1, 3, 1, 20, 9, 1, 210, 107, 18, 1, 3024, 1650, 335, 30, 1, 55440, 31594, 7155, 805, 45, 1, 1235520, 725592, 176554, 22785, 1645, 63, 1, 32432400, 19471500, 4985316, 705649, 59640, 3010, 84, 1, 980179200, 598482000, 159168428, 24083892, 2267769, 136080, 5082, 108, 1
Offset: 1
Examples
Triangle starts: [1] 1; [2] 3, 1; [3] 20, 9, 1; [4] 210, 107, 18, 1; [5] 3024, 1650, 335, 30, 1; [6] 55440, 31594, 7155, 805, 45, 1; [7] 1235520, 725592, 176554, 22785, 1645, 63, 1;
Links
- Priyavrat Deshpande and Krishna Menon, A statistic for regions of braid deformations, Séminaire Lotharingien de Combinatoire (2022) Vol. 86, Issue B, Art. No. 23.
- D. E. Knuth, Convolution polynomials, arXiv:math/9207221 [math.CA], 1992; Mathematica J. 2.1 (1992), no. 4, 67-78.
- J.-C. Novelli and J.-Y. Thibon, Noncommutative Symmetric Functions and Lagrange Inversion, arXiv:math/0512570 [math.CO], 2005-2006.
Programs
-
Maple
# The function BellMatrix is defined in A264428. # Adds (1,0,0,0, ..) as column 0. BellMatrix(n -> (2*n+1)!/(n+1)!, 9); # Peter Luschny, Jan 28 2016 gf := n -> x*pochhammer(n + x, n)/(n + x): ser := n -> series(gf(n), x, n + 2): seq(seq(coeff(ser(n), x, k), k = 1..n), n = 1..9); # Peter Luschny, Jun 27 2024
-
Mathematica
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; rows = 11; M = BellMatrix[(2#+1)!/(#+1)!&, rows]; Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
-
Maxima
a(n,m):=(n-1)!*(sum((stirling1(k,m)*binomial(2*n,n-k))/(k-1)!,k,m,n)); /* Vladimir Kruchinin, Mar 26 2013 */
Formula
a(n, 1) = A006963(n + 1) = (2*n - 1)!/n!, n >= 1;
a(n, m) = Sum_{j=1..n-m+1} binomial(n - 1, j - 1)*A006963(j + 1)*a(n - j, m - 1), n >= m >= 2.
E.g.f.: ((1 - sqrt(1 - 4*x))/(2*x))^y. - Vladeta Jovovic, May 02 2003
a(n, m) = (n - 1)!*(Sum_{k=m..n} Stirling1(k, m)*binomial(2*n, n-k)/(k-1)!). - Vladimir Kruchinin, Mar 26 2013
Extensions
New name by Peter Luschny, Jun 27 2024
Comments