cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038455 Triangle read by rows: T(n, k) = [x^k] x*Pochhammer(n + x, n)/(n + x).

Original entry on oeis.org

1, 3, 1, 20, 9, 1, 210, 107, 18, 1, 3024, 1650, 335, 30, 1, 55440, 31594, 7155, 805, 45, 1, 1235520, 725592, 176554, 22785, 1645, 63, 1, 32432400, 19471500, 4985316, 705649, 59640, 3010, 84, 1, 980179200, 598482000, 159168428, 24083892, 2267769, 136080, 5082, 108, 1
Offset: 1

Views

Author

Keywords

Comments

Original name: A Jabotinsky-triangle related to A006963.
i) This triangle gives the nonvanishing entries of the Jabotinsky matrix for F(z) = c(z) with c(z) the g.f. for the Catalan numbers A000108. (Notation of F(z) as in Knuth's paper).
ii) E(n, x) = Sum_{m=1..n} a(n, m)*x^m, E(0, x) = 1, are exponential convolution polynomials: E(n, x + y) = Sum_{k=0..n} binomial(n, k)*E(k, x)*E(n-k, y), (cf. Knuth's paper with E(n, x)= n!*F(n, x).)
iii) Explicit formula: see Knuth's paper for f(n, m) formula with f(k) = A006963(k + 1).
Bell polynomial of second kind for log(A000108(x)). - Vladimir Kruchinin, Mar 26 2013
Also the Bell transform of A006963(n+2). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 28 2016

Examples

			Triangle starts:
  [1]       1;
  [2]       3,      1;
  [3]      20,      9,      1;
  [4]     210,    107,     18,     1;
  [5]    3024,   1650,    335,    30,    1;
  [6]   55440,  31594,   7155,   805,   45,  1;
  [7] 1235520, 725592, 176554, 22785, 1645, 63, 1;
		

Crossrefs

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> (2*n+1)!/(n+1)!, 9); # Peter Luschny, Jan 28 2016
    gf := n -> x*pochhammer(n + x, n)/(n + x):
    ser := n -> series(gf(n), x, n + 2):
    seq(seq(coeff(ser(n), x, k), k = 1..n), n = 1..9);  # Peter Luschny, Jun 27 2024
  • Mathematica
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 11; M = BellMatrix[(2#+1)!/(#+1)!&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten
    (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
  • Maxima
    a(n,m):=(n-1)!*(sum((stirling1(k,m)*binomial(2*n,n-k))/(k-1)!,k,m,n)); /* Vladimir Kruchinin, Mar 26 2013 */

Formula

a(n, 1) = A006963(n + 1) = (2*n - 1)!/n!, n >= 1;
a(n, m) = Sum_{j=1..n-m+1} binomial(n - 1, j - 1)*A006963(j + 1)*a(n - j, m - 1), n >= m >= 2.
E.g.f.: ((1 - sqrt(1 - 4*x))/(2*x))^y. - Vladeta Jovovic, May 02 2003
a(n, m) = (n - 1)!*(Sum_{k=m..n} Stirling1(k, m)*binomial(2*n, n-k)/(k-1)!). - Vladimir Kruchinin, Mar 26 2013

Extensions

New name by Peter Luschny, Jun 27 2024