A039619
Second column of Jabotinsky-triangle A038455 related to A006963.
Original entry on oeis.org
1, 9, 107, 1650, 31594, 725592, 19471500, 598482000, 20742534576, 800575997760, 34059828307680, 1583808130195200, 79925022369273600, 4350478314951982080, 254086498336122950400, 15849890120755311667200
Offset: 2
G.f. = x^2 + 9*x^3 + 107*x^4 + 1650*x^5 + 31594*x^6 + 725592*x^7 + ...
- D. E. Knuth, Convolution polynomials, Mathematica J. 2.1 (1992), no. 4, 67-78.
- D. E. Knuth, Problem 11832,The American Mathematical Monthly, Vol. 122, No. 4 (April 2015), page 390.
- David Callan, An identity for A039619.
-
Rest[Rest[CoefficientList[Series[Log[(1-Sqrt[1-4*x])/x/2]^2/2, {x, 0, 20}], x]* Range[0, 20]!]] (* Vaclav Kotesovec, Oct 07 2013 *)
a[ n_] := If[ n < 1, 0, Sum[ 1/k, {k, n + 1, 2 n - 1}] (2 n - 1)!/n!]; (* Michael Somos, May 11 2015 *)
a[ n_] := If[ n < 1, 0, Sum[ Times @@ Drop[ Range[ n - 1] + n, {k}], {k, n - 1}]]; (* Michael Somos, May 11 2015 *)
-
{a(n) = if( n<1, 0, sum(k=n+1, 2*n-1, 1/k) * (2*n-1)! / n!)}; /* Michael Somos, May 11 2015 */
A039646
Third column of Jabotinsky-triangle A038455 related to A006963.
Original entry on oeis.org
1, 18, 335, 7155, 176554, 4985316, 159168428, 5681708100, 224518859136, 9737714177928, 460132506980640, 23537198603711520, 1296157111841533824, 76467514565810332800, 4812260962479036076800, 321826321845522830649600
Offset: 0
-
Drop[With[{nmax = 20}, CoefficientList[Series[Log[(1 - Sqrt[1 - 4*x])/x/2]^3/6, {x, 0, nmax}], x]*Range[0, nmax]!], 3] (* G. C. Greubel, Dec 14 2017 *)
-
my(x='x+O('x^30)); Vec(serlaplace(log((1-sqrt(1-4*x))/x/2)^3/6)) \\ G. C. Greubel, Dec 14 2017
A001761
a(n) = (2*n)!/(n+1)!.
Original entry on oeis.org
1, 1, 4, 30, 336, 5040, 95040, 2162160, 57657600, 1764322560, 60949324800, 2346549004800, 99638080819200, 4626053752320000, 233153109116928000, 12677700308232960000, 739781100339240960000, 46113021921146019840000
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- L. W. Beineke and R. E. Pippert, Enumerating labeled k-dimensional trees and ball dissections, pp. 12-26 of Proceedings of Second Chapel Hill Conference on Combinatorial Mathematics and Its Applications, University of North Carolina, Chapel Hill, 1970. Reprinted in Math. Annalen, Vol. 191 (1971), pp. 87-98.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- Peter J. Cameron, Some treelike objects, Quart. J. Math. Oxford, Vol. 38, No. 2 (1987), pp. 155-183. See p. 166. - _N. J. A. Sloane_, Apr 18 2014
- Ali Chouria, Vlad-Florin Drǎgoi, and Jean-Gabriel Luque, On recursively defined combinatorial classes and labelled trees, arXiv:2004.04203 [math.CO], 2020.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 80.
- K. A. Penson and J.-M. Sixdeniers, Integral Representations of Catalan and Related Numbers, J. Integer Sequences, Vol. 4 (2001), Article 01.2.5.
- Karol A. Penson and Allan I. Solomon, Coherent states from combinatorial sequences, arXiv:quant-ph/0111151, 2001.
-
seq(mul((n+k), k=2..n), n=0..17); # Zerinvary Lajos, Feb 15 2008
-
Table[(2*n)!/(n+1)!,{n,0,20}] (* Vincenzo Librandi, Feb 23 2012 *)
-
combinat::catalan(n)*n! $ n = 0..17; // Zerinvary Lajos, Feb 15 2007
-
A001761(n)=binomial(2*n,n+1)*(n-1)! \\ M. F. Hasler, Feb 23 2012
-
{Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}
{a(n)=sum(k=0,n,(-1)^(n-k)*(n+1)^(k-1)*Stirling1(n,k))} \\ Paul D. Hanna, Nov 09 2012
-
[binomial(2*n,n)/(1+n)*factorial(n) for n in range(0, 18)] # Zerinvary Lajos, Dec 03 2009
A143395
Triangle read by rows: T(n,k) = number of forests of k labeled rooted trees of height at most 1, with n labels, where any root may contain >= 1 labels, n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 7, 9, 1, 0, 15, 55, 18, 1, 0, 31, 285, 205, 30, 1, 0, 63, 1351, 1890, 545, 45, 1, 0, 127, 6069, 15421, 7770, 1190, 63, 1, 0, 255, 26335, 116298, 95781, 24150, 2282, 84, 1, 0, 511, 111645, 830845, 1071630, 416451, 62370, 3990, 108, 1
Offset: 0
T(3,2) = 9: {1}{2}<-3, {1}{3}<-2, {1}{2,3}, {2}{1}<-3, {2}{3}<-1, {2}{1,3}, {3}{1}<-2, {3}{2}<-1, {3}{1,2}.
Triangle begins:
1;
0, 1;
0, 3, 1;
0, 7, 9, 1;
0, 15, 55, 18, 1;
0, 31, 285, 205, 30, 1;
0, 63, 1351, 1890, 545, 45, 1;
0, 127, 6069, 15421, 7770, 1190, 63, 1;
...
From _Peter Bala_, Jan 07 2015: (Start)
T(4,2) = 55: There are 7 partitions of the set {1,2,3,4} into 2 blocks. For the 3 set partitions of the type {a,b}{c,d} we can choose a nonempty subset from each block in one of 3*3 ways giving 3*3*3 = 27 possibilities in all. The remaining 4 set partitions of {1,2,3,4} into 2 blocks are of the form {a,b,c}{d} and we can choose a nonempty subset from each block in 7*1 ways giving 4*7*1 = 28 possible choices. Thus in total T(4,2) = 27 + 28 = 55.
Recurrence equation example:
T(4,2) = sum {j = 1..3} (2^(4-j) - 1)*binomial(3,j)*T(j,1) = 7*3*1 + 3*3*3 + 1*1*7 = 55.
Connection constants:
Row 3 = [0, 7, 9, 1]. Hence x^3 = 7*x + 9*x*(x - 3) + x*(x - 4)*(x - 5); Row 4 = [0, 15, 55, 18, 1]. Hence x^4 = 15*x + 55*x*(x - 3) + 18*x*(x - 4)*(x - 5) + x*(x - 5)*(x - 6)*(x - 7).
With the array M(k) as defined in the Comments section, the infinite product M(0)*M(1)*M(2)*... begins
/ 1 \/1 \/1 \ / 1 \
| 3 1 ||0 1 ||0 1 | | 3 1 |
| 7 6 1 ||0 3 1 ||0 0 1 |... = | 7 9 1 |
|15 21 9 1 ||0 7 6 1 ||0 0 3 1 | |15 55 18 1 |
|... ||0 15 21 9 1||0 0 7 6 1| |... |
|... ||... ||... | | |
(End)
- Alois P. Heinz, Rows n = 0..140, flattened
- Eli Bagno, Riccardo Biagioli, and David Garber, Some identities involving second kind Stirling numbers of types B and D, arXiv:1901.07830 [math.CO], 2019.
- Peter Bala, A 3 parameter family of generalized Stirling numbers
- Takao Komatsu, Eli Bagno, and David Garber, A q,r-analogue of poly-Stirling numbers of second kind with combinatorial applications, arXiv:2209.06674 [math.CO], 2022.
- Index entries for sequences related to rooted trees
-
[[(&+[Binomial(n,j)*StirlingSecond(j,k)*k^(n-j): j in [k..n]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Mar 07 2019
-
T:= (n, k)-> add(binomial(n,t)*Stirling2(t,k)*k^(n-t), t=k..n):
seq(seq(T(n, k), k=0..n), n=0..11);
-
t[0, 0]=1; t[n_, k_]:= SeriesCoefficient[Exp[y*Exp[x]*(Exp[x]-1)], {x, 0, n}, {y, 0, k}]*n!; Table[t[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Jean-François Alcover, Dec 05 2013, after Vladeta Jovovic *)
Table[If[n==k==0, 1, If[k==0, 0, Sum[Binomial[n, j]*StirlingS2[j, k]* k^(n-j), {j,k,n}]]], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 07 2019 *)
-
{T(n,k) = sum(j=k, n, binomial(n,j)*stirling(j,k,2)*k^(n-j))};
for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Mar 07 2019
-
# uses[bell_matrix from A264428]
bell_matrix(lambda n: 2^(n+1)-1, 10) # Peter Luschny, Jan 18 2016
A257635
Triangle with n-th row polynomial equal to Product_{k = 1..n} (x + n + k).
Original entry on oeis.org
1, 2, 1, 12, 7, 1, 120, 74, 15, 1, 1680, 1066, 251, 26, 1, 30240, 19524, 5000, 635, 40, 1, 665280, 434568, 117454, 16815, 1345, 57, 1, 17297280, 11393808, 3197348, 495544, 45815, 2527, 77, 1, 518918400, 343976400, 99236556, 16275700, 1659889, 107800, 4354, 100, 1
Offset: 0
Triangle begins:
[0] 1;
[1] 2, 1;
[2] 12, 7, 1;
[3] 120, 74, 15, 1;
[4] 1680, 1066, 251, 26, 1;
[5] 30240, 19524, 5000, 635, 40, 1;
[6] 665280, 434568, 117454, 16815, 1345, 57, 1;
...
-
seq(seq(coeff(product(n + x + k, k = 1 .. n), x, i), i = 0..n), n = 0..8);
# Alternative:
p := n -> n!*hypergeom([-n, -x + n], [-n], 1):
seq(seq((-1)^k*coeff(simplify(p(n)), x, k), k=0..n), n=0..6); # Peter Luschny, Nov 27 2021
-
p[n_, x_] := FunctionExpand[Gamma[2*n + x + 1] / Gamma[n + x + 1]];
Table[CoefficientList[p[n, x], x], {n,0,8}] // Flatten (* Peter Luschny, Mar 21 2022 *)
Showing 1-5 of 5 results.
Comments