cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038503 Sum of every 4th entry of row n in Pascal's triangle, starting at "n choose 0".

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 16, 36, 72, 136, 256, 496, 992, 2016, 4096, 8256, 16512, 32896, 65536, 130816, 261632, 523776, 1048576, 2098176, 4196352, 8390656, 16777216, 33550336, 67100672, 134209536, 268435456, 536887296, 1073774592, 2147516416, 4294967296, 8589869056, 17179738112
Offset: 0

Views

Author

Keywords

Comments

Number of strings over Z_2 of length n with trace 0 and subtrace 0.
Same as number of strings over GF(2) of length n with trace 0 and subtrace 0.
M^n = [1,0,0,0] = [a(n), A000749(n), A038505(n), A038504(n)]; where M = the 4 X 4 matrix [1,1,0,0; 0,1,1,0; 0,0,1,1; 1,0,0,1]. Sum of the 4 terms = 2^n. Example: M^6 = [16, 20, 16, 12], sum of terms = 64 = 2^6. - Gary W. Adamson, Mar 13 2009
a(n) is the number of generalized compositions of n when there are i^2/2 - 5i/2 + 3 different types of i, (i=1,2,...). - Milan Janjic, Sep 24 2010
{A038503, A038504, A038505, A000749} is the difference analog of the hyperbolic functions {h_1(x), h_2(x), h_3(x), h_4(x)} of order 4. For the definitions of {h_i(x)} and the difference analog {H_i (n)} see [Erdelyi] and the Shevelev link respectively. - Vladimir Shevelev, Aug 01 2017

Examples

			a(3;0,0)=1 since the one binary string of trace 0, subtrace 0 and length 3 is { 000 }.
		

References

  • A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, 2nd ed., Problem 38, p. 70, gives an explicit formula for the sum.

Crossrefs

Programs

  • Maple
    A038503_list := proc(n) local i; series(exp(z)*(cosh(z)+cos(z))/2,z,n+2):
    seq(i!*coeff(%,z,i),i=0..n) end: A038503_list(32); # Peter Luschny, Jul 10 2012
    a := n -> hypergeom([1/4 - n/4, 1/2 - n/4, 3/4 - n/4, -n/4], [1/4, 1/2, 3/4], 1):
    seq(simplify(a(n)), n = 0..36); # Peter Luschny, Mar 18 2023
  • Mathematica
    nn = 18; a = Sum[x^(4 i)/(4 i)!, {i, 0, nn}]; b = Exp[x];Range[0, nn]! CoefficientList[Series[a b, {x, 0, nn}], x]  (* Geoffrey Critzer, Dec 27 2011 *)
    Join[{1},LinearRecurrence[{4,-6,4},{1,1,1},40]] (* Harvey P. Dale, Dec 02 2014 *)
  • PARI
    a(n) = sum(k=0, n\4, binomial(n, 4*k)); \\ Michel Marcus, Mar 13 2019

Formula

From Paul Barry, Mar 18 2004: (Start)
G.f.: (1-x)^3/((1-x)^4-x^4);
a(n) = Sum_{k=0..floor(n/4)} binomial(n, 4k); a(n) = 2^(n-1) + 2^((n-2)/2)(cos(Pi*n/4) - sin(Pi*n/4)). (End)
Binomial transform of 1/(1-x^4). a(n) = 4a(n-1) - 6a(n-2) + 4a(n-3); a(n) = Sum_{k=0..n} binomial(n, k)(sin(Pi*(k+1)/2)/2 + (1+(-1)^k)/4); a(n) = Sum_{k=0..floor(n/4)} binomial(n, 4k). - Paul Barry, Jul 25 2004
a(n) = Sum_{k=0..n} binomial(n, 4(n-k)). - Paul Barry, Aug 30 2004
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)(1+(-1)^k)/2. - Paul Barry, Nov 29 2004
a(n; t, s) = a(n-1; t, s) + a(n-1; t+1, s+t+1) where t is the trace and s is the subtrace.
E.g.f.: exp(z)*(cosh(z) + cos(z))/2. - Peter Luschny, Jul 10 2012
From Vladimir Shevelev, Aug 01 2017: (Start)
For n >= 1, {H_i(n)} are linearly dependent sequences: a(n) = H_1(n) = H_2(n) - H_3(n) + H_4(n);
a(n+m) = a(n)*a(m) + H_4(n)*H_2(m) + H_3(n)*H_3(m) + H_2(n)*H_4(m), where H_2 = A038504, H_3 = A038505, H_4 = A000749.
For proofs, see Shevelev's link, Theorems 2, 3. (End)
a(n) = hypergeom([1/4 - n/4, 1/2 - n/4, 3/4 - n/4, -n/4], [1/4, 1/2, 3/4], 1). - Peter Luschny, Mar 18 2023