cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038522 On a (2n+1) X (2n+1) board, let m(i) be the number of squares that are i knight's moves from center; sequence gives max m(i) for i >= 0.

Original entry on oeis.org

1, 1, 8, 20, 32, 52, 68, 76, 96, 96, 120, 120, 148, 148, 176, 176, 204, 204, 232, 232, 260, 260, 288, 288, 316, 316, 344, 344, 372, 372, 400, 400, 428, 428, 456, 456, 484, 484, 512, 512, 540, 540, 568, 568, 596, 596, 624, 624, 652, 652, 680, 680, 708, 708
Offset: 0

Views

Author

Antreas P. Hatzipolakis (xpolakis(AT)hol.gr)

Keywords

Examples

			On a 5 X 5 board, [ m(0),...,m(4) ]=[ 1,8,8,4,4 ], max=8, so a(2)=8.
		

Crossrefs

Cf. A018842.

Programs

  • Mathematica
    LinearRecurrence[{1,1,-1},{1,1,8,20,32,52,68,76,96,96,120,120,148},60] (* Harvey P. Dale, Apr 15 2020 *)
  • PARI
    Vec((1 + x^2)*(1 + 5*x^2 + 12*x^3 - 4*x^5 + 4*x^6 - 8*x^7 + 4*x^10) / ((1 - x)^2*(1 + x)) + O(x^50)) \\ Colin Barker, Mar 16 2020

Formula

a(n) = 28*floor(n/2) - 20 for n >= 10. - Andrew Howroyd, Feb 28 2020
From Stefano Spezia, Feb 29 2020: (Start)
G.f.: (1 + 6*x^2 + 12*x^3 + 5*x^4 + 8*x^5 + 4*x^6 - 12*x^7 + 4*x^8 - 8*x^9 + 4*x^10 + 4*x^12)/((1 - x)^2*(1 + x)).
a(n) = a(n-1) + a(n-2) - a(n-3) for n > 12. (End)

Extensions

Corrected and additional terms added by Andrew Howroyd, Feb 28 2020