A038552 Largest squarefree number k such that Q(sqrt(-k)) has class number n.
163, 427, 907, 1555, 2683, 3763, 5923, 6307, 10627, 13843, 15667, 17803, 20563, 30067, 34483, 31243, 37123, 48427, 38707, 58507, 61483, 85507, 90787, 111763, 93307, 103027, 103387, 126043, 166147, 134467, 133387, 164803, 222643, 189883
Offset: 1
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..100
- Duncan A. Buell, Small class numbers and extreme values of L-functions of quadratic fields, Math. Comp., 31 (1977), 786-796.
- Ralf Stephan, Prove or disprove. 100 Conjectures from the OEIS, #16, arXiv:math/0409509 [math.CO], 2004.
- M. Watkins, Class numbers of imaginary quadratic fields, Mathematics of Computation 73 (2004), pp. 907-938.
- Eric Weisstein's World of Mathematics, Class Number
Programs
-
Mathematica
<< NumberTheory`NumberTheoryFunctions`; a = Table[0, {32} ]; Do[ If[ Mod[n, 4] != 1 || Mod[n, 4] != 2 || SquareFreeQ[n], c = ClassNumber[ -n]; If[c < 33, a[[c]] = n]], {n, 0, 250000} ]; a
-
PARI
lista() = {my(nn=10^7, NMAX=100, v = vector(NMAX), c); for (k=1, nn, if (isfundamental(-k), if ((c = qfbclassno(-k)) <= NMAX, v[c]=k););); v;} \\ Michel Marcus, Feb 17 2022; takes several minutes
Extensions
More terms from Robert G. Wilson v, Nov 08 2001
2 more terms from Dean Hickerson, May 20 2003. The values were obtained by transcribing and combining data from Tables 1-3 of Buell's paper, which has information for all values of n up to 125.
Values checked against Watkins' data, which proves the values of a(n) for n = 1..100. Charles R Greathouse IV, Feb 08 2012
Comments