cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A038581 Absolute value of first differences of A038552, divided by 24.

Original entry on oeis.org

11, 20, 27, 47, 45, 90, 16, 180, 134, 76, 89, 115, 396, 184, 135, 245, 471, 405, 825, 124, 1001, 220, 874, 769, 405, 15, 944, 1671, 1320, 45, 1309, 2410, 1365, 876, 280, 2446, 5460, 1519, 310, 1485, 680, 855, 795, 481, 6440, 3640, 1680, 2416, 155, 6525, 4455, 585, 4459
Offset: 1

Views

Author

Robert Brewer (rbrewerjr(AT)aol.com)

Keywords

Crossrefs

Cf. A038552.

Formula

a(n) = abs(A038552(n+1)-A038552(n))/24.

Extensions

Corrected and extended by Michel Marcus, Apr 29 2016

A046125 Number of negative fundamental discriminants having class number n.

Original entry on oeis.org

9, 18, 16, 54, 25, 51, 31, 131, 34, 87, 41, 206, 37, 95, 68, 322, 45, 150, 47, 350, 85, 139, 68, 511, 95, 190, 93, 457, 83, 255, 73, 708, 101, 219, 103, 668, 85, 237, 115, 912, 109, 339, 106, 691, 154, 268, 107, 1365, 132, 345, 159, 770, 114, 427, 163, 1205, 179, 291
Offset: 1

Views

Author

Keywords

Examples

			a(1) = 9 because the discriminants {-3,-4,-7,-8,-11,-19,-43,-67,-163} are the only ones with class number 1.
		

Crossrefs

Programs

  • Mathematica
    FundamentalDiscriminantQ[n_] := n != 1 && (Mod[n, 4] == 1 || ! Unequal[ Mod[n, 16], 8, 12]) && SquareFreeQ[n/2^IntegerExponent[n, 2]] (* via Eric E. Weisstein *);
    k = 1; t = Table[0, {125}]; While[k < 2000001, If[ FundamentalDiscriminantQ@ -k, a = NumberFieldClassNumber@ Sqrt@ -k; If[a < 126, t[[a]]++]]; k++]; t (* Robert G. Wilson v Jun 01 2011 *)
  • PARI
    lista(nn=10^7) = {my(NMAX=100, v = vector(NMAX), c); for (k=1, nn, if (isfundamental(-k), if ((c = qfbclassno(-k)) <= NMAX, v[c] ++););); v;} \\ Michel Marcus, Feb 17 2022

Formula

From Amiram Eldar, Apr 15 2025: (Start)
Formulas from Soundararajan (2007):
Sum_{k=1..n} a(k) = (3*zeta(2)/zeta(3)) * n^2 + O(n^2 * log(n)^(-1/2+eps)).
a(n) << n^2 * log(log(n))^4 / log(n). (End)

Extensions

Edited by Robert G. Wilson v, May 13 2003
Corrected and extended by Dean Hickerson, May 20 2003. The values were obtained by transcribing and combining data from Tables 1-3 of Buell's paper, which has information for all values of n up to 125.

A060649 Smallest number k==3 (mod 4) such that Q(sqrt(-k)) has class number n, or 0 if no such k exists.

Original entry on oeis.org

3, 15, 23, 39, 47, 87, 71, 95, 199, 119, 167, 231, 191, 215, 239, 399, 383, 335, 311, 455, 431, 591, 647, 695, 479, 551, 983, 831, 887, 671, 719, 791, 839, 1079, 1031, 959, 1487, 1199, 1439, 1271, 1151, 1959, 1847, 1391, 1319, 2615, 3023, 1751, 1511, 1799
Offset: 1

Views

Author

Robert G. Wilson v, Apr 17 2001

Keywords

Comments

From Jianing Song, May 08 2021: (Start)
Conjecture 1: a(n) > 0 for all n;
Conjecture 2: a(n) = o(n^2). (End)
Conjecture: this is also the smallest absolute value of negative fundamental discriminant d for class number n. This is to say, for even n, if a(n) > 0 and A344072(n/2) > 0, then A344072(n/2) > a(n). - Jianing Song, Oct 03 2022

Crossrefs

Programs

  • Mathematica
    (* First do <
    				
  • PARI
    a(n) = my(d=3); while(!isfundamental(-d) || qfbclassno(-d)!=n, d+=4); d \\ Jianing Song, May 08 2021

Extensions

Edited by Dean Hickerson, Mar 17 2003
Escape clause added by Jianing Song, May 08 2021

A081319 Smallest squarefree integer k such that Q(sqrt(-k)) has class number n, or 0 if no such k exists.

Original entry on oeis.org

1, 5, 23, 14, 47, 26, 71, 41, 199, 74, 167, 89, 191, 101, 239, 146, 383, 293, 311, 194, 431, 269, 647, 329, 479, 314, 983, 341, 887, 461, 719, 446, 839, 614, 1031, 626, 1487, 1199, 1439, 689, 1151, 794, 1847, 854, 1319, 941, 3023, 1106, 1511, 1109, 1559
Offset: 1

Views

Author

Dean Hickerson, Mar 18 2003

Keywords

Examples

			From _Jianing Song_, May 08 2021: (Start)
a(6) = min{A060649(6), A344072(3)/4} = min{87, 104/4} = 26.
a(12) = min{A060649(12), A344072(6)/4} = min{231, 356/4} = 89.
a(18) = min{A060649(12), A344072(9)/4} = min{335, 1172/4} = 293.
a(38) = min{A060649(38), A344072(19)/4} = min{1199, 4916/4} = 1199. (End)
		

Crossrefs

Programs

Formula

a(n) = A060649(n) for odd n > 1. For even n, assuming that A060649(n) > 0 and A344072(n/2) > 0, a(n) = min{A060649(n), A344072(n/2)/4}. - Jianing Song, May 08 2021

Extensions

Edited by Max Alekseyev, Apr 28 2010
Escape clause added by Jianing Song, May 08 2021

A225060 Discriminants D < 0 such that h(D) > h(D') for D < D' < 0, negated.

Original entry on oeis.org

3, 15, 23, 39, 47, 71, 95, 119, 167, 191, 215, 239, 311, 431, 479, 551, 671, 719, 791, 839, 959, 1151, 1319, 1511, 1559, 1679, 1991, 2159, 2351, 2519, 2831, 2999, 3071, 3671, 3839, 3911, 4031, 4079, 4199, 4679, 4991, 5351, 5519, 5591, 5711, 6431, 6551, 7391, 8111
Offset: 1

Views

Author

Keywords

Comments

Essentially records in A014600.

References

  • H. Heilbronn, On the class number in imaginary quadratic fields, Quart. J. Math. Oxford 5 (1934), pp. 293-301.

Crossrefs

Programs

  • PARI
    r=0;forstep(n=3,1e6,[1,3],t=qfbclassno(-n);if(t>r,r=t;print1(n", ")))

A225061 Record class numbers of discriminants of imaginary quadratic fields: h(-A225060(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 14, 15, 19, 21, 25, 26, 30, 31, 32, 33, 36, 41, 45, 49, 51, 52, 56, 60, 63, 64, 68, 73, 76, 81, 82, 83, 84, 85, 88, 91, 92, 93, 97, 99, 109, 114, 117, 120, 121, 126, 134, 135, 138, 139, 153, 156, 161, 165, 174, 178, 181, 185, 195, 202, 205
Offset: 1

Views

Author

Keywords

References

  • H. Heilbronn, On the class number in imaginary quadratic fields, Quart. J. Math. Oxford 5 (1934), pp. 293-301.

Crossrefs

Programs

  • PARI
    r=0;forstep(n=3,1e6,[1,3],t=qfbclassno(-n);if(t>r,print1(r=t", ")))

A357600 Largest number k such that C(-k) is the cyclic group of order n, where C(D) is the class group of the quadratic field with discriminant D; or 0 if no such k exists.

Original entry on oeis.org

163, 427, 907, 1555, 2683, 3763, 5923, 5947, 10627, 13843, 15667, 17803, 20563, 30067, 34483, 31243, 37123, 48427, 38707, 58507, 61483, 85507, 90787, 111763, 93307, 103027, 103387, 126043, 166147, 134467, 133387, 164803, 222643, 189883, 210907, 217627, 158923, 289963, 253507
Offset: 1

Views

Author

Jianing Song, Oct 05 2022

Keywords

Comments

Different from the largest absolute value of negative fundamental discriminant d for class number n (which is equal to A038552(n) for n <= 100) at indices 8, 48, 52, 64, 68, 96, ...
Conjecture: all terms are odd.

Examples

			Let h(D) denote the class number of the quadratic field with discriminant D.
    n | Largest number k such | k' = largest number k |   C(-k')
      |    that C(-k) = C_n   |  such that h(-k) = n  |
  ----+-----------------------+-----------------------+----------
    8 |                  5947 |                  6307 |  C_2 X C_4
   48 |                333547 |                335203 | C_2 X C_24
   52 |                435163 |                439147 | C_2 X C_26
   64 |                680947 |                693067 | C_2 X C_32
   68 |                780187 |                819163 | C_2 X C_34
   96 |               1681243 |               1684027 | C_2 X C_48
		

Crossrefs

A357573 Largest even k such that h(-k) = 2n, where h(D) is the class number of the quadratic field with discriminant D; or 0 if no such k exists.

Original entry on oeis.org

232, 1012, 1588, 3448, 5272, 8248, 9172, 14008, 21652, 21508, 26548, 32008, 45208, 53188, 57688, 65668, 73588, 85012, 121972, 120712, 117748, 137272, 189352, 162628, 174868, 201268, 194968, 249208, 188248, 332872, 341608, 424708, 370792, 411832, 377512, 539092, 332308, 486088, 369832, 435268, 604948, 667192, 548788, 601528, 596212, 566008, 737752, 795832, 645208, 802888
Offset: 1

Views

Author

Jianing Song, Oct 03 2022

Keywords

Comments

By definition, a(n) <= 4*A038552(2n).
Conjecture: if A038552(2n) == 3 (mod 4), a(n) > 0, then a(n) < A038552(2n). If this is true, then A038552(n) is also the largest absolute value of negative fundamental discriminant d for class number n.

Examples

			a(1) = 232: h(-k) = 2 <=> k = 15, 20, 24, 35, 40, 51, 52, 88, 91, 115, 123, 148, 187, 232, 235, 267, 403, 427, so the largest even k such that h(-k) = 2 is k = 232.
		

Crossrefs

Showing 1-8 of 8 results.