cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A046125 Number of negative fundamental discriminants having class number n.

Original entry on oeis.org

9, 18, 16, 54, 25, 51, 31, 131, 34, 87, 41, 206, 37, 95, 68, 322, 45, 150, 47, 350, 85, 139, 68, 511, 95, 190, 93, 457, 83, 255, 73, 708, 101, 219, 103, 668, 85, 237, 115, 912, 109, 339, 106, 691, 154, 268, 107, 1365, 132, 345, 159, 770, 114, 427, 163, 1205, 179, 291
Offset: 1

Views

Author

Keywords

Examples

			a(1) = 9 because the discriminants {-3,-4,-7,-8,-11,-19,-43,-67,-163} are the only ones with class number 1.
		

Crossrefs

Programs

  • Mathematica
    FundamentalDiscriminantQ[n_] := n != 1 && (Mod[n, 4] == 1 || ! Unequal[ Mod[n, 16], 8, 12]) && SquareFreeQ[n/2^IntegerExponent[n, 2]] (* via Eric E. Weisstein *);
    k = 1; t = Table[0, {125}]; While[k < 2000001, If[ FundamentalDiscriminantQ@ -k, a = NumberFieldClassNumber@ Sqrt@ -k; If[a < 126, t[[a]]++]]; k++]; t (* Robert G. Wilson v Jun 01 2011 *)
  • PARI
    lista(nn=10^7) = {my(NMAX=100, v = vector(NMAX), c); for (k=1, nn, if (isfundamental(-k), if ((c = qfbclassno(-k)) <= NMAX, v[c] ++););); v;} \\ Michel Marcus, Feb 17 2022

Formula

From Amiram Eldar, Apr 15 2025: (Start)
Formulas from Soundararajan (2007):
Sum_{k=1..n} a(k) = (3*zeta(2)/zeta(3)) * n^2 + O(n^2 * log(n)^(-1/2+eps)).
a(n) << n^2 * log(log(n))^4 / log(n). (End)

Extensions

Edited by Robert G. Wilson v, May 13 2003
Corrected and extended by Dean Hickerson, May 20 2003. The values were obtained by transcribing and combining data from Tables 1-3 of Buell's paper, which has information for all values of n up to 125.

A038552 Largest squarefree number k such that Q(sqrt(-k)) has class number n.

Original entry on oeis.org

163, 427, 907, 1555, 2683, 3763, 5923, 6307, 10627, 13843, 15667, 17803, 20563, 30067, 34483, 31243, 37123, 48427, 38707, 58507, 61483, 85507, 90787, 111763, 93307, 103027, 103387, 126043, 166147, 134467, 133387, 164803, 222643, 189883
Offset: 1

Views

Author

Robert Brewer (rbrewerjr(AT)aol.com)

Keywords

Comments

Conjecture: this is also the largest absolute value of negative fundamental discriminant d for class number n. This is to say, for even n, let k be the largest odd number such that h(-k) = n (if it exists), k' be the largest even number such that h(-k') = n (if it exists), then k > k'; here h(D) is the class number of the quadratic field with discriminant D. [Comment rewritten by Jianing Song, Oct 03 2022]
Numbers so far are all 19 mod 24. - Ralf Stephan, Jul 07 2003

Crossrefs

Programs

  • Mathematica
    << NumberTheory`NumberTheoryFunctions`; a = Table[0, {32} ]; Do[ If[ Mod[n, 4] != 1 || Mod[n, 4] != 2 || SquareFreeQ[n], c = ClassNumber[ -n]; If[c < 33, a[[c]] = n]], {n, 0, 250000} ]; a
  • PARI
    lista() = {my(nn=10^7, NMAX=100, v = vector(NMAX), c); for (k=1, nn, if (isfundamental(-k), if ((c = qfbclassno(-k)) <= NMAX, v[c]=k););); v;} \\ Michel Marcus, Feb 17 2022; takes several minutes

Extensions

More terms from Robert G. Wilson v, Nov 08 2001
2 more terms from Dean Hickerson, May 20 2003. The values were obtained by transcribing and combining data from Tables 1-3 of Buell's paper, which has information for all values of n up to 125.
Values checked against Watkins' data, which proves the values of a(n) for n = 1..100. Charles R Greathouse IV, Feb 08 2012

A060649 Smallest number k==3 (mod 4) such that Q(sqrt(-k)) has class number n, or 0 if no such k exists.

Original entry on oeis.org

3, 15, 23, 39, 47, 87, 71, 95, 199, 119, 167, 231, 191, 215, 239, 399, 383, 335, 311, 455, 431, 591, 647, 695, 479, 551, 983, 831, 887, 671, 719, 791, 839, 1079, 1031, 959, 1487, 1199, 1439, 1271, 1151, 1959, 1847, 1391, 1319, 2615, 3023, 1751, 1511, 1799
Offset: 1

Views

Author

Robert G. Wilson v, Apr 17 2001

Keywords

Comments

From Jianing Song, May 08 2021: (Start)
Conjecture 1: a(n) > 0 for all n;
Conjecture 2: a(n) = o(n^2). (End)
Conjecture: this is also the smallest absolute value of negative fundamental discriminant d for class number n. This is to say, for even n, if a(n) > 0 and A344072(n/2) > 0, then A344072(n/2) > a(n). - Jianing Song, Oct 03 2022

Crossrefs

Programs

  • Mathematica
    (* First do <
    				
  • PARI
    a(n) = my(d=3); while(!isfundamental(-d) || qfbclassno(-d)!=n, d+=4); d \\ Jianing Song, May 08 2021

Extensions

Edited by Dean Hickerson, Mar 17 2003
Escape clause added by Jianing Song, May 08 2021

A081363 Smallest squarefree integer k such that Q(sqrt(k)) has class number n.

Original entry on oeis.org

2, 10, 79, 82, 401, 235, 577, 226, 1129, 1111, 1297, 730, 4759, 1534, 9871, 2305, 7054, 4954, 15409, 3601, 7057, 4762, 23593, 9634, 24859, 13321, 8761, 5626, 49281, 11665, 97753, 15130, 55339, 19882, 25601, 18226, 24337, 19834, 41614, 16899, 55966, 47959
Offset: 1

Views

Author

Dean Hickerson, Mar 19 2003

Keywords

Comments

What is known about the asymptotics of this sequence? - Charles R Greathouse IV, Jan 26 2017
Records: 2, 10, 79, 82, 401, 577, 1129, 1297, 4759, 9871, 15409, 23593, 24859, 49281, 97753, 106537, 159199, 197137, 212137, 239119, 245023, 444089, 589822, 614849, 815413, 837929, 943951, 1025494, 1224121, 1240369, 1333255, 1334026, ..., . - Robert G. Wilson v, Apr 12 2017

Crossrefs

Programs

Extensions

More terms from Max Alekseyev, Apr 28 2010
Showing 1-4 of 4 results.