cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038575 Number of prime factors of n-th Fibonacci number, counted with multiplicity.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 3, 1, 2, 2, 2, 1, 6, 1, 2, 3, 3, 1, 5, 2, 4, 3, 2, 1, 9, 3, 2, 4, 4, 1, 7, 2, 4, 3, 2, 3, 10, 3, 3, 3, 6, 2, 7, 1, 5, 5, 3, 1, 12, 3, 6, 3, 4, 2, 8, 4, 7, 5, 3, 2, 12, 2, 3, 5, 6, 3, 7, 3, 5, 5, 7, 2, 14, 2, 4, 6, 5, 4, 8, 2, 9, 7, 3, 1, 13, 4, 3, 4, 9, 2, 12, 5, 6, 4, 2, 6, 16, 4, 5, 6, 10, 2, 8
Offset: 0

Views

Author

Keywords

Comments

Row lengths of table A060441. - Reinhard Zumkeller, Aug 30 2014

Examples

			a(12) = 6 because Fibonacci(12) = 144 = 2^4 * 3^2 has 6 prime factors.
		

Crossrefs

Cf. A022307 (number of distinct prime factors), A086597 (number of primitive prime factors).
Cf. also A001222, A000045, A060441.

Programs

  • Haskell
    a038575 n = if n == 0 then 0 else a001222 $ a000045 n
    -- Reinhard Zumkeller, Aug 30 2014
    
  • Maple
    with(numtheory):with(combinat):a:=proc(n) if n=0 then 0 else bigomega(fibonacci(n)) fi end: seq(a(n), n=0..102); # Zerinvary Lajos, Apr 11 2008
  • Mathematica
    Join[{0, 0}, Table[Plus@@(Transpose[FactorInteger[Fibonacci[n]]][[2]]), {n, 3, 102}]]
    Join[{0},PrimeOmega[Fibonacci[Range[110]]]] (* Harvey P. Dale, Apr 14 2018 *)
  • PARI
    a(n)=bigomega(fibonacci(n)) \\ Charles R Greathouse IV, Sep 14 2015
    
  • Python
    from sympy import primeomega, fibonacci
    def a(n): return 0 if n == 0 else primeomega(fibonacci(n))
    print([a(n) for n in range(103)]) # Michael S. Branicky, Feb 02 2022

Formula

For n > 0: a(n) = A001222(A000045(n)). - Reinhard Zumkeller, Aug 30 2014
a(n) >= A001222(n) - 1 (Lind, 1968). - Amiram Eldar, Feb 02 2022