A038575 Number of prime factors of n-th Fibonacci number, counted with multiplicity.
0, 0, 0, 1, 1, 1, 3, 1, 2, 2, 2, 1, 6, 1, 2, 3, 3, 1, 5, 2, 4, 3, 2, 1, 9, 3, 2, 4, 4, 1, 7, 2, 4, 3, 2, 3, 10, 3, 3, 3, 6, 2, 7, 1, 5, 5, 3, 1, 12, 3, 6, 3, 4, 2, 8, 4, 7, 5, 3, 2, 12, 2, 3, 5, 6, 3, 7, 3, 5, 5, 7, 2, 14, 2, 4, 6, 5, 4, 8, 2, 9, 7, 3, 1, 13, 4, 3, 4, 9, 2, 12, 5, 6, 4, 2, 6, 16, 4, 5, 6, 10, 2, 8
Offset: 0
Keywords
Examples
a(12) = 6 because Fibonacci(12) = 144 = 2^4 * 3^2 has 6 prime factors.
Links
- Amiram Eldar, Table of n, a(n) for n = 0..1408 (terms 0..1000 from T. D. Noe derived from Kelly's data)
- Blair Kelly, Fibonacci and Lucas Factorizations.
- Douglas Lind, Problem H-145, Advanced Problems and Solutions, The Fibonacci Quarterly, Vol. 6, No. 6 (1968), p. 351; Factor Analysis, Solution to Problem H-145 by the proposer, ibid., Vol. 8, No. 4 (1970), pp. 386-387.
- Eric Weisstein's World of Mathematics, Fibonacci Number.
Crossrefs
Programs
-
Haskell
a038575 n = if n == 0 then 0 else a001222 $ a000045 n -- Reinhard Zumkeller, Aug 30 2014
-
Maple
with(numtheory):with(combinat):a:=proc(n) if n=0 then 0 else bigomega(fibonacci(n)) fi end: seq(a(n), n=0..102); # Zerinvary Lajos, Apr 11 2008
-
Mathematica
Join[{0, 0}, Table[Plus@@(Transpose[FactorInteger[Fibonacci[n]]][[2]]), {n, 3, 102}]] Join[{0},PrimeOmega[Fibonacci[Range[110]]]] (* Harvey P. Dale, Apr 14 2018 *)
-
PARI
a(n)=bigomega(fibonacci(n)) \\ Charles R Greathouse IV, Sep 14 2015
-
Python
from sympy import primeomega, fibonacci def a(n): return 0 if n == 0 else primeomega(fibonacci(n)) print([a(n) for n in range(103)]) # Michael S. Branicky, Feb 02 2022
Formula
a(n) >= A001222(n) - 1 (Lind, 1968). - Amiram Eldar, Feb 02 2022
Comments