A038621 Growth function of an infinite cubic graph (number of nodes at distance <=n from fixed node).
1, 4, 10, 22, 46, 81, 129, 198, 284, 392, 530, 691, 883, 1114, 1374, 1674, 2022, 2405, 2837, 3326, 3856, 4444, 5098, 5799, 6567, 7410, 8306, 9278, 10334, 11449, 12649, 13942, 15300, 16752, 18306, 19931, 21659, 23498, 25414, 27442, 29590, 31821, 34173, 36654
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,2,-4,2,-1,2,-1).
Programs
-
Mathematica
CoefficientList[Series[(x + 1) (2 x^8 - 4 x^7 + 3 x^6 - x^5 + 6 x^4 + 2 x^3 + 2 x^2 + x + 1)/((x - 1)^4 (x^2 + x + 1)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 22 2013 *) LinearRecurrence[{2,-1,2,-4,2,-1,2,-1},{1,4,10,22,46,81,129,198,284,392},50] (* Harvey P. Dale, Sep 03 2016 *)
Formula
a(0)=1, a(1)=4; for n>=2: if n == 0 (mod 3), a(n) = (4*n^3 + 6*n^2 + 15*n - 9)/9; if n == 1 (mod 3), a(n) = (4*n^3 + 6*n^2 + 18*n - 10)/9; if n == 2 (mod 3), a(n) = (4*n^3 + 6*n^2 + 15*n + 4)/9.
G.f.: (x+1)*(2*x^8-4*x^7+3*x^6-x^5+6*x^4+2*x^3+2*x^2+x+1) / ((x-1)^4*(x^2+x+1)^2). - Colin Barker, May 10 2013
Extensions
More terms from Colin Barker, May 10 2013
Comments