cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038713 a(n) = n XOR (n-1), i.e., nim-sum of sequential pairs, written in binary.

Original entry on oeis.org

1, 11, 1, 111, 1, 11, 1, 1111, 1, 11, 1, 111, 1, 11, 1, 11111, 1, 11, 1, 111, 1, 11, 1, 1111, 1, 11, 1, 111, 1, 11, 1, 111111, 1, 11, 1, 111, 1, 11, 1, 1111, 1, 11, 1, 111, 1, 11, 1, 11111, 1, 11, 1, 111, 1, 11, 1, 1111, 1, 11, 1, 111, 1, 11, 1, 1111111, 1, 11, 1, 111, 1
Offset: 1

Views

Author

Henry Bottomley, May 02 2000

Keywords

Examples

			a(6) = 11 because 110 XOR 101 = 11 base 2.
		

Crossrefs

Cf. A038712 translated to binary, A001511 translated to unary (repeated 1's).

Programs

  • Magma
    [(10^(Valuation(n, 2)+1)-1)/9: n in [1..70]]; // Vincenzo Librandi, Mar 11 2013
  • Mathematica
    Table[(10^IntegerExponent[2*n, 2] - 1)/9, {n, 100}] (* Vincenzo Librandi, Mar 11 2013 *)
  • PARI
    a(n)=if(n<1,0, (10^(valuation(n,2)+1)-1)/9) /* Michael Somos, Apr 28 2005 */
    

Formula

a(n) = (10^A001511(n) - 1)/(10 - 1).
Multiplicative with a(2^e) = (10^(e+1) - 1)/9, a(p^e) = 1 if p odd.
G.f.: Sum_{k>=0} 10^k * x^(2^k) / (1 - x^(2^k)). - Ilya Gutkovskiy, Dec 15 2020
Dirichlet g.f.: zeta(s) * 2^s/(2^s - 10). - Amiram Eldar, Sep 21 2023