A038726 The number of n-step self-avoiding walks in a 5-dimensional hypercubic lattice with no non-contiguous adjacencies.
1, 10, 90, 730, 5930, 47690, 384090, 3075610, 24663210, 197117210, 1576845050, 12589411530, 100567197770, 802350892730, 6403639865530
Offset: 0
Links
- A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108; see Table I and Eq. 5 on p. 1090 (the case d=5).
Formula
a(n) = 10 + 80*A038746(n) + 480*A038748(n) + 1920*A323037(n) + 3840*A323063(n). (It can be proved using Eq. (5), p. 1090, in the paper by Nemirovsky et al. (1992).) - Petros Hadjicostas, Jan 03 2019
Extensions
Name edited by Petros Hadjicostas, Jan 02 2019
Title clarified, a(0), and a(12)-a(14) from Sean A. Irvine, Jul 29 2020
Comments