cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038730 Path-counting triangular array T(i,j), read by rows, obtained from array t in A038792 by T(i,j) = t(2*i-j, j) (for i >= 1 and 1 <= j <= i).

Original entry on oeis.org

1, 1, 2, 1, 4, 5, 1, 6, 12, 13, 1, 8, 23, 33, 34, 1, 10, 38, 73, 88, 89, 1, 12, 57, 141, 211, 232, 233, 1, 14, 80, 245, 455, 581, 609, 610, 1, 16, 107, 393, 888, 1350, 1560, 1596, 1597, 1, 18, 138, 593, 1594, 2881, 3805, 4135, 4180, 4181
Offset: 1

Views

Author

Clark Kimberling, May 02 2000

Keywords

Examples

			Triangle T(i,j) begins as follows:
  1;
  1,  2;
  1,  4,  5;
  1,  6, 12,  13;
  1,  8, 23,  33,  34;
  1, 10, 38,  73,  88,  89;
  1, 12, 57, 141, 211, 232, 233;
  ... [edited by _Petros Hadjicostas_, Sep 02 2019]
		

Crossrefs

Programs

  • Magma
    [(&+[Binomial(2*n-j-2, j): j in [0..k-1]]): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 05 2022
    
  • Maple
    t:= proc(i, j) option remember; `if`(i=1 or j=1, 1,
          max(t(i-1, j)+t(i-1, j-1), t(i-1, j-1)+t(i, j-1)))
        end:
    T:= (i, j)-> t(2*i-j, j):
    seq(seq(T(i, j), j=1..i), i=1..10);  # Alois P. Heinz, Sep 02 2019
  • Mathematica
    T[i_, j_]:= Sum[Binomial[2i-k-2, k], {k,0,j-1}];
    Table[T[i, j], {i, 1, 10}, {j, 1, i}] // Flatten (* Jean-François Alcover, Dec 06 2019 *)
  • SageMath
    def A038730(n,k): return sum( binomial(2*n-j-2, j) for j in (0..k-1))
    flatten([[A038730(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Apr 05 2022

Formula

T(n, n) = A001519(n) for n >= 1 (odd-indexed Fibonacci numbers).
From Petros Hadjicostas, Sep 03 2019: (Start)
Following Dil and Mezo (2008, p. 944), define the incomplete Fibonacci numbers by F(n,k) = Sum_{s = 0..k} binomial(n-1-s, s) for n >= 1 and 0 <= k <= floor((n-1)/2). Then T(i, j) = F(2*i-1, j-1) for 1 <= j <= i.
G.f. for column j: Define g(t,j) = ((1+t)^j * (1+t-t^2) + (1-t)^j * (1-t-t^2))/2, which is a function of t^2. Then the g.f. for column j is Sum_{i >= j} T(i,j)*x^i = x^j * (Fibonacci(2*j-1) * (1-x)^(j+1) + Fibonacci(2*j-2) * x * (1-x)^j - x * g(sqrt(x), j)) / ((1-x)^j * (1-3*x+x^2)). This follows from the results in Pintér and Srivastava (1999).
(End)