cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A038758 Number of ways of covering a 2n X 2n lattice by 2n^2 dominoes with exactly 4 horizontal (or vertical) dominoes.

Original entry on oeis.org

16, 281, 1785, 7175, 22015, 56406, 126966, 259170, 490050, 871255, 1472471, 2385201, 3726905, 5645500, 8324220, 11986836, 16903236, 23395365, 31843525, 42693035, 56461251, 73744946, 95228050, 121689750, 154012950, 193193091
Offset: 2

Views

Author

Yong Kong (ykong(AT)curagen.com), May 06 2000

Keywords

Examples

			a(3) = 281 because we have 281 ways to cover a 4 X 4 lattice with exactly 4 horizontal dominoes and exactly 14 vertical dominoes.
		

Crossrefs

Programs

  • Magma
    [(1/24)*n*(n-1)*(n+1)*(12*n^3-11*n-10): n in [2..30]]; // Vincenzo Librandi, Oct 22 2013
  • Mathematica
    CoefficientList[Series[(16 + 169 x + 154 x^2 + 21 x^3)/(1 - x)^7, {x, 0, 30}], x] (* Vincenzo Librandi, Oct 22 2013 *)

Formula

a(n) = (1/24)*n*(n-1)*(n+1)*(12*n^3-11*n-10).
G.f.: x^2*(16+169*x+154*x^2+21*x^3)/(1-x)^7. [Colin Barker, Jun 26 2012]

Extensions

More terms from James Sellers, May 10 2000