cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A097469 Decimal expansion of growth constant C for dimer model on square grid.

Original entry on oeis.org

1, 3, 3, 8, 5, 1, 5, 1, 5, 1, 9, 7, 6, 0, 9, 6, 7, 6, 6, 9, 3, 8, 1, 9, 5, 9, 0, 2, 0, 1, 8, 5, 1, 3, 5, 3, 7, 0, 6, 4, 3, 5, 3, 6, 9, 7, 1, 2, 7, 9, 1, 1, 3, 1, 4, 6, 4, 1, 2, 3, 4, 7, 8, 6, 6, 2, 2, 3, 9, 1, 1, 3, 3, 0, 0, 7, 9, 8, 0, 9, 7, 8, 6, 4, 6, 4, 8, 7, 3, 8, 4, 6, 1, 7, 7, 4, 4
Offset: 1

Views

Author

Ralf Stephan, Sep 18 2004

Keywords

Examples

			1.33851515197609676693819590201851353706435369712791131464123...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.8.3 and 5.23.1, pp. 63, 407.

Crossrefs

Cf. A000796 (Pi), A006752 (Catalan's constant).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); Exp(Catalan(R)/Pi(R)); // G. C. Greubel, Aug 25 2018
  • Mathematica
    RealDigits[Exp[Catalan/Pi], 10, 100][[1]] (* G. C. Greubel, Aug 25 2018 *)
  • PARI
    default(realprecision, 100); exp(Catalan/Pi) \\ G. C. Greubel, Aug 25 2018
    

Formula

Equals e^(G/Pi), with G = A006752 (Catalan's constant).
Equals exp((1/Pi^2) * Integral_{x=0..Pi/2, y=0..Pi/2} log(4*cos(x)^2 + 4*cos(y)^2) dx dy). - Vaclav Kotesovec, Jan 04 2021
Equals sqrt(A130834) = exp(A143233). - Hugo Pfoertner, Nov 18 2024

Extensions

Terms a(14) onward corrected by G. C. Greubel, Aug 26 2018

A054344 Number of ways of covering a 2n X 2n lattice with 2n^2 dominoes of which exactly 6 are horizontal (or vertical) dominoes.

Original entry on oeis.org

9, 1064, 21656, 197484, 1143366, 4927524, 17240292, 51631617, 137044523, 330284988, 735542444, 1533609350, 3024043008, 5684167992, 10249533240, 17821214019, 30006185613, 49097892704, 78305096016
Offset: 2

Views

Author

Yong Kong (ykong(AT)curagen.com), May 06 2000

Keywords

Examples

			a(3) = 1064 because we have 1064 ways to cover a 36 X 36 lattice with exactly 6 horizontal (or vertical) dominoes and exactly 12 vertical (or horizontal) dominoes.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x^9-10*x^8+45*x^7-36*x^6+3096*x^5 +17256*x^4 +27724*x^3+11421*x^2+974*x+9)/(x-1)^10,{x,0,30}],x] (* Vincenzo Librandi, Jun 26 2012 *)

Formula

a(n) = (1/720)*n*(n+1)*(120*n^7-300*n^6-70*n^5+363*n^4+416*n^3-231*n^2-394*n-264).
G.f.: x^2*(x^9-10*x^8+45*x^7-36*x^6+3096*x^5+17256*x^4+27724*x^3+11421*x^2+974*x+9)/(x-1)^10. - Colin Barker, Jun 26 2012
Showing 1-2 of 2 results.